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Abstract

The Java programming language offers several possibilities to build parallel applications. To explore
these possibilities and to test their applicability, we have built four parallel Java programs. These
programs are also written for Manta, a native Java compiler developed at the Vrije Universiteit
Amsterdam, based on Sun’s RMI model and JavaParty’s RMI model. In this paper, the performance
and applicability of both systems are evaluated and explained by means of four parallel programs:
Fast Fourier Transformation, Radix sort, Checkers and Water.
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1  Introduction

Currently, there is much research in the field of parallel programming using Java. The Java object−
oriented programming language is clean and type−safe, which makes it attractive for writing
distributed and multi−threaded applications. Multi−threaded applications communicate through
shared memory, while distributed Java applications use a message−passing protocol based on Remote
Procedure Calls, called Remote Method Invocation (RMI).

Manta[10] is a high−performance Java system, which implements the Java RMI model using
different communication protocols for different networks. The system uses a native Java compiler
rather than an interpreter or Just In Time (JIT) compiler. Manta provides some Java extensions (see
section 3.2) to build parallel programs with a highly efficient, easy to use communication mechanism
almost identical to the JavaParty model[9]. But still, Manta complies with the Java RMI model[3].

Our goal is to gain experience with parallel programming using Sun’s Java system and the
Manta system, and to look at the usability of both systems. The usability of each system is determined
by looking at its performance and its ease of use to the programmer. In order to do this, we have
written four Java applications, using each system’s own communication model. The performance is
measured by developing four different versions of each program: A sequential version, a multi−
threaded version, a Java RMI version and a Manta RMI version. All versions are compared to each
other to calculate the efficiency of the parallel versions.

In this paper we first describe Java’s possibilities for parallel programming with multi−
processors and multi−computers. Next we will look at Manta and its extensions. In section 5 to
section 8 the four applications are described in detail. Problems are discussed in section 9. In section
10 our results and conclusions are presented.
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2  Multi−threaded programming

Parallel programming in Java on a multi−processor (shared memory) machine is accomplished by
using multiple threads. A thread is a portion of a computer program (a sub−process) that may execute
concurrently with other threads in the same program, while sharing the same address space. Threads
communicate with each other through shared variables and they synchronize using locks, semaphores
or monitors [2].

Java offers two object−oriented ways to the programmer to create a new thread, via the
Runnable interface and the Thread class. A thread object is created by declaring the object to
implement the Runnable interface which requires the programmer to write a run() method, or by
declaring the object to be a subclass of Thread and thus override the run() method. To start a thread
after its creation, the programmer must call its start() method, which creates a new native thread and
executes the object’s run() method.

In Java every object can be used as a lock in a synchronized statement, or as a monitor using
synchronized methods. When a thread enters a synchronized method, the object is locked, and
unlocked when the method returns. This will ensure that at any given time, only one thread is
executing a synchronized method.

A thread may block inside a monitor using the wait() method. The thread will then be
blocked and the object unlocked, to allow other threads to call synchronized methods of the object.
To wake up all waiting threads, the notifyAll() method can be used. When a thread is notified, it locks
the object and continues execution of the synchronized method. Note that the wait() and notifyAll()
methods can only be used inside a synchronized method.

Another way to achieve synchronization is by using a so−called barrier. A thread may use a
barrier to block its execution, until all other threads have arrived at the same barrier. Then all threads
are woken up and will continue execution. Unlike the Sun Java language, the Manta runtime system
offers an interface to its underlying communication layer called Panda, which has a barrier construct
built−in that may be used by the programmer. In Sun Java, the programmer has to write his / her own
barrier functionality. From the programmer’s view, there are no other significant differences between
Manta and Sun threads.
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3  Remote Method Invocation

3.1  Sun’s RMI system

The Java Remote Method Invocation system allows an object running in one Java Virtual Machine
(JVM) to invoke methods on an object running in another Java VM. RMI provides remote
communication between programs written in the Java programming language [3].

Java RMI applications are often client−server oriented. Typically, the server application
creates some remote objects, makes their references accessible, and waits for clients to invoke
methods on these objects. A typical client application receives a remote reference to one or more
remote objects in the server and then invokes methods on them. An object becomes remote by
extending the java.rmi.server.UnicastRemoteObject class and by implementing a remote interface,
which has the following characteristics:

• A remote interface extends the interface java.rmi.Remote

• Each method of the interface declares java.rmi.RemoteException in its throws clause, in addition
to any application−specific exceptions

To obtain references to remote objects, the RMI registry is used. Remote objects are registered via
Java’s simple naming facility, the registry, by binding the object to a name. A client can retrieve an
object’s reference by using the Naming.lookup() method. When this object is located on the same
machine, the client only has to specify the object’s name. When a reference of an object on a
different machine is needed, Naming.lookup() also requires the hostname of the machine where the
object is located. Once the reference has been acquired, the client application can perform (remote)
communication by using standard Java method invocation. Java makes no difference whether the
object is remote or local, it uses RMI in both cases. Only those methods defined in the object’s
Interface can be invoked. An object’s data can only be retrieved or altered by use of a method defined
in the interface. When no more communication is necessary, objects should be unbound by using
Naming.unbind().

When a reference to a remote object, the hostname can be retrieved by creating a file in
which remote objects can write their hostname or can read other hostnames. All four applications use
this method to locate other objects.

Parameters passed to methods of a remote class are always sent by value, even arbitrary
complex data structures. This is accomplished by Java’s automatic serialization protocol which
converts (serializes) the data objects into an array of bytes. Serialization produces a deep copy. Then,
when the data is received, it is automatically deserialized by Java’s runtime system.

3.2  Manta’s RMI system

Manta supports both the standard Java RMI programming model and the JavaParty [9] model. For our
Manta applications we have used the JavaParty [9] model. With this model, Manta does not require
interfaces such as java.rmi.Remote to declare an object to be remote. As in the JavaParty[9] system, it
uses the keyword ‘remote’, a Java language extension. When a class is tagged with the new remote
keyword, every call to a method in this class will be translated into a Remote Procedure Call.

With Java RMI, remote objects are always created on the local CPU, while Manta and
JavaParty allow the programmer to create remote objects on any CPU using the
RuntimeSystem.setTarget(CpuNr) method. It is thus possible for code being executed on CPU1 to
create a remote object on CPU4, and to immediately receive a reference to that object. Therefore, the
Manta system does not need a registry to locate remote objects.

Both Manta and Java RMI do not allow the programmer direct access to a remote object’s
data members. With Java this follows from the language definition, since variables cannot be
declared in an Interface. Although Manta does not require an Interface, a compile−time error will be
generated as well, when an attempt is made to access a remote object’s fields directly.

There is an important difference in the way Manta and JavaParty handle method calls inside
a remote class. Consider the following example:
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remote class A {

methodA(myObject obj) { ... }

methodB(myObject obj) {
methodA(obj);

}
}

In this example, methodB calls methodA and passes the parameter obj, which is an object. In Manta,
no RMI call takes place and the object is transferred ‘by reference’. JavaParty on the other hand does
perform a RMI call and thus uses ‘call by value’. So, in this example JavaParty is slower than Manta
because of the overhead induced by the extra RMI call.
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4  The Distributed ASCI Supercomputer (DAS)

The system that we used to run and test the parallel Java applications is called the DAS. It is a wide−
area distributed cluster designed by the Advanced School for Computing and Imaging (ASCI). DAS
consists of four clusters, located at four Dutch universities. The cluster at the VU contains 128 nodes,
the other three clusters have 24 nodes (200 nodes in total). The system was built by Parsytec and runs
the Red Hat Linux version 5.2 operating system. Each node contains: 

• A 200 Mhz Pentium Pro (Siemens−Nixdorf D983 motherboard)
• 128 MB EDO−RAM in DIMM modules (64 MB for the clusters in Delft and UvA)
• A 2.5 GByte local disk
• A Myrinet interface card
• A Fast Ethernet interface card

The nodes within a local cluster are connected by a Myrinet SAN network, which is used as high−
speed interconnect, mapped into user−space. The network interfaces are interconnected in a torus
topology using 32 switches and 2 x 1.28 Gbit/s cables. In addition, Fast Ethernet is used as OS
network (file transport). The four local clusters are connected by wide−area ATM networks, so the
entire system can be used as a 200−node wide−area distributed cluster. In this work, however, we
only use the VU cluster.

While Java uses TCP/IP in combination with Fast Ethernet to implement RMI calls, Manta
can use both UDP/IP (Fast Ethernet) and LFC (Myrinet). We have used Myrinet when measuring
Manta application performance, unless otherwise noted. The Java applications were compiled with
JDK1.2 and Manta. When compiled with JDK1.2 the applications were run on Fast Ethernet, with
Manta they were run on Myrinet.

Measurements for the shared memory applications were performed on a dual Pentium Pro
200 Mhz, the das0fs. The das0fs SMP is connected to the VU−DAS cluster and is actually the file
server of the DAS. Unfortunately we were not able to measure performance of the multi−threaded
versions compiled with Manta on the das0fs. This because Manta makes use of Panda which does not
supply for kernel−space threads, only user−space threads, causing a multi−threaded program to use
only one CPU. So, it would have been of little use to measure the performance of our multi−threaded
programs using Manta, because no more than one CPU would be used. Java does support kernel−
space threads and allows the multi−threaded program to use multiple CPUs.
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5  Fast Fourier Transformation

5.1  Introduction

Linear transforms, especially Fourier and Laplace transforms, are widely used in solving problems in
science and engineering. The Fourier transform is used in linear systems analysis, antenna studies,
optics, random process modeling, probability theory, quantum physics, and boundary−value problems
and has been successfully applied to restoration of astronomical data [8]. This program calculates a
one−dimensional Fast Fourier Transform, using the transpose algorithm [6].

5.2  The sequential algorithm

The sequential FFT program is a direct conversion of an Orca application written by Aske Plaat,
which on its turn is based on existing SPLASH−2 code [5, 6, 7]. It consists of two classes, i.e. ‘FFT‘
which forms the main program and a helper class to store the matrix values in.

The program starts by setting some global variables and by placing random values into the
main matrix. After that, the Fast Fourier Transformations take place. The matrix is transposed three
times and the values are manipulated using a relatively complicated algorithm consisting of three
inner loops.

The values stored in the matrix are manipulated directly from within the main program by
defining the matrix−data ‘‘friendly’. Therefore, it is not necessary to call member functions in order
to retrieve or alter the values, because they are directly available. The speed gain that we obtained by
using this friendly data emphasizes our goal of high performance. The benefits of ’information
hiding’, which states that an object should never allow the user to gain direct access to its member
variables in order to create a certain form of abstraction, are considered less important.

5.3  Parallelism

Multi−threaded

The multi−threaded version of FFT is based on the same Orca code that we used to write the
sequential application. The distribution of the problem task to the various threads is accomplished by
splitting the original matrix into equally sized parts. Although each thread has access to the entire
matrix (shared memory), it performs the transformations only on the parts that it is assigned to.
Whenever a thread wants to perform FFT on a certain part of the matrix (or wants to transpose it), the
thread waits for all other threads by using a barrier. Then a copy is made of the matrix values, and the
data manipulations take place on that copy. Wrong matrix values would be calculated if the other
threads were to manipulate the values at the same time. So, by using a barrier, all threads run
synchronized with each other and we can be sure that it is safe to access or modify a piece of the data.
When the Fast Fourier Transformations on the copy are finished, the new data is copied back into the
original matrix.

The main reason for copying the data is to avoid the high synchronization overhead. If the
matrix elements were modified directly, a synchronization would be required after every
modification. By using blocks of data, this number of synchronizations is greatly reduced.

Manta’s Remote Method Invocation

The differences between the multi−threaded FFT and the Manta RMI version are relatively small.
The main program distributes the Slaves (which extend RemoteThread) to all available CPUs. This is
accomplished by marking the Slave class ‘remote’ and setting the appropriate CPU target. Then,
when an instance of a Slave is created (using new) it actually resides on the other CPU.

As in the multi−threaded version, the matrix is split into multiple sub−matrices. All Slaves
have access to this array of sub−matrices, but the remote Matrix objects themselves are not
necessarily located on the same CPU. While the slaves in the multi−threaded FFT could directly
access and/or modify the values of a matrix, this is not possible in Manta’s RMI system. Instead, the
slaves must use the remote get() and set() methods of the Matrix class. For reasons mentioned earlier,
matrix manipulations require barriers for the algorithm to remain correct.
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When performing measurements on the Manta RMI version of FFT, we found that the
application performed much communication. Because the FFT calculation involves three matrix
transpositions (all−to−all communication in essence) and two data copies (all−to−all communication
as well), an optimized version was written to reduce this communication overhead. It is accomplished
by distributing the sub−matrices in such a way that the matrix manipulations can be performed
locally (on the same processor) as much as possible. The Matrix class is no longer remote, since all
matrices are created inside the Slave objects now and there is no centralized object needed anymore
to handle access to the matrices. If a slave still wants to access a matrix on another CPU, it performs
a Remote Method Invocation to obtain the matrix’ values to the owner directly. The same holds for
setting the values of a matrix. To show the impact of this optimization in relation to the amount of
communication performed, consider this example with M=18 on 32 CPUs:

Data
transfer

RMI calls Bytes
transferred

Normal 3,399 133,003,834

Optimized 1,178 1,690,368

Notice that these values are maxima. Because of a load balancing problem with the unoptimized
Manta application, the ‘Bytes transferred’ value is extremely high for one particular CPU, while the
other processors send only a fraction of this amount. The distribution of data transfer is much better
with the optimized Manta RMI version.

Sun’s Remote Method Invocation

This implementation of FFT is quite a bit larger than the Manta version, mostly because of the use of
the RMI registry, the try { } catch(...) Exception handling blocks and the unavoidable file operations
to establish a link between all slaves and the Master process.

The most important feature of this Java version is the use of a centralized Master class. A
Master object is created on one CPU, which stores all Matrix values. All slaves have access to this
remote Master object via its Interface. The Interface offers methods to retrieve or alter sub−matrices,
and to synchronize with the other CPUs by use of a barrier. It goes without saying that this
centralized solution doesn’t improve the scalability of the program. When increasing the number of
processors, the Master node becomes more and more a bottleneck because of the communication.

Like Manta, an optimized version was built to reduce the communication overhead, but
unfortunately we were not able to run the application since the Java runtime system crashes when
using more than two CPUs. Therefore, no performance measurements are available.

5.4  Results

All performance measurements for FFT are  available in Appendix A.
The first graph shows the performance of the multi−threaded application vs. the sequential

one, for three different matrix sizes. 

Fig. 5.1

As can be seen, the speedup scores are rather poor (1.17 with M=14 at best, where the amount of
transformed complex numbers equals 2M). They can be explained by looking at the next picture were
the application execution time is split into several parts. For example, it shows that the multi−
threaded version is using more time waiting in barriers and doing communication as the matrix size
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increases, while the sequential one does not need communication or barriers at all. That is the most
important reason for the poor performance of the multi−threaded application. Another reason is that
the sequential program can manipulate the values in the matrix directly (even without method calls)
while the multi−threaded application needs to copy the data to a temporary buffer first. Then, when
the updates are done, the buffer is transferred back to the original matrix again. These extra copy
operations are visible in the graph when examining the ’pure FFT’ bars. Although each CPU with the
multi−threaded program needs to perform exactly half the FFT calculations, the execution time is not
halved because of the back−and−forth copying overhead.

Fig. 5.2

The bar named ‘Incl. Trans’ shows the time needed for pure FFT calculation plus transpositioning
and communication, basically the application’s total execution time excluding initialization.

When comparing the multi−threaded application with two CPUs to the same application using a
single CPU, the speedup is much better (close to 1.75 in all three cases, not shown).

The following graphs show the performance of the non−optimized Fast Fourier
Transformation programs on both the Java RMI system and Manta’s RMI system using different
problem sizes. These two applications can be compared best since the algorithm used is similar.
Notice the different scales used in the graphs. Manta clearly outperforms Java, not only in absolute
application execution times, but also in the multi−processor efficiency factors. As can be seen, the
Java version does not get any speedup since the speedup factor is below 1 in all cases, while Manta
achieves a maximal speedup of 13.98 using 32 processors and a maximum efficiency of 0.61 with 2
CPUs. Unfortunately, the efficiency rapidly declines when using more than 8 CPUs because of
communication overhead.

Fig. 5.3a Fig. 5.3b Fig. 5.3c

Fig. 5.4a Fig. 5.4b Fig. 5.4c
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The optimized Manta RMI version performs better. The speedup factor increases in nearly all cases
when the number of CPUs increases, and the efficiency figures are mostly above 0.55. For
comparison: on a problem−size of M=18 (262.144 values) running on 16 CPUs, Java achieves an
efficiency factor of just 0.01, where optimized Manta reaches 0.60.

It may seem somewhat surprising that the speedup of the optimized Manta application
exceeds the speedup of the multi−threaded program. This is probably due to the fact that the shared−
memory computer does not have a reservation system like the multi−processor machine. This means
that, while the multi−processor machine guarantees 100% CPU time for the user, the multi−threaded
application will be scheduled among other processes of other users, which may strongly influence the
performance measurements. In the worst case, if only one of the CPUs is available for a moment,
only one of the threads (thread A) can run. But since the threads need to be synchronized every once
in a while, A will have to wait for the other one (B) to be scheduled and reach the barrier as well. The
same may happen to thread B.

Measurements on the Orca version are given in Fig. 5.6 for comparison. Not only does the Orca
implementation clearly outperform Manta in execution times, it also runs more efficient on multiple
processors. Notice that some Orca efficiency factors shown in the graphs slightly exceed 1.0, which
means super−linear speedup is achieved. This is probably due to the fact that the speedup is measured
by comparing the multi−processor Orca performance against the same application running on a single
CPU. Since the application was specifically written to be used on a processor pool, it runs rather
inefficiently on one processor. Other reasons for the high parallel speedup may be cache−related
advantages and some amount of inaccuracy in the measurements.

The results show that Orca achieves better efficiency factors than Manta, especially with a
large matrix. Both implementations show a decline in efficiency when using more than 16 CPUs.

Fig. 5.5a Fig. 5.5b Fig. 5.5c

Fig. 5.6a Fig. 5.6b Fig. 5.6c

The next graph shows the execution times (using a single CPU) split into various sub−tasks.
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Fig. 5.7

This graph clearly shows that the pure FFT calculations take longer on Manta than with Orca. Orca
beats Manta by a factor of about 2.65, which is the main reason for the Manta application to take
nearly 2.25 times more total execution time.

When comparing the Orca program (using 1 CPU) with the original sequential Manta
application (the one without communication), the total execution time factor is improved to about
1.30. Notice that Manta communication is not shown in the graph because it is not applicable in this
case, while Orca does have communication.

Fig. 5.8
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6  Radix sort

6.1  Introduction

Sorting is one of the most frequently studied problems in computer science. It is important in a wide
variety of practical applications and it is a simple combinatorial problem with interesting and diverse
solutions. Sorting is also an important benchmark for parallel computers. Radix sort is a simple and
efficient sorting method. It does not use comparisons to determine the relative ordering of the
elements. It relies on the binary representation of the elements to be sorted. The radix sort algorithm
is a stable algorithm, it preserves the order of input elements with the same value. 

Radix sorting is used in many applications for sorting integers, strings, floating−point
numbers etc. The radix sort described in this thesis is one for sorting integers. The problem is in the
order of O(n log n).

6.2  Sequential algorithm

If b is the number of bits in the binary representation of an element, the radix sort algorithm examines
the elements to be sorted R bits at a time, where R< b, starting with the least significant block of R
bits in each element. So the radix sort algorithm requires b / R iterations. During each iteration the
elements are sorted according to the R−bit block currently being considered.

The algorithm is implemented in two different ways: one is a traditional algorithm which
uses the bucket sort algorithm[16] and the other is the SPLASH version which uses the counting sort
algorithm[11].

Radix sort using Bucket Sort (RBS)

The idea is to sort numbers (keys) by distributing them into buckets. For each possible key there is
one bucket. So if R bits are examined at a time, the possible amount of keys is 2R and 2R buckets are
needed. On each iteration the algorithm puts the elements in their respective buckets (according to
their key value) and collects them during a traversal of the buckets.

The most important classes are the ‘Sequential’ class which forms the main program and the
‘Radixsort’ class where the actual sorting is performed. The ‘Sequential’ class starts by generating a
random array of integers that must be sorted. These integers are passed to the ‘Radixsort’ class which
sorts them according to the basic algorithm. For the implementation of buckets, lists are used,
because it is not known beforehand how many keys a bucket will contain. Most of the data variables
and methods are friendly or public so that variables can be accessed directly. No method calls are
needed to access data in another class. Although this is against OO principles, it is faster.

SPLASH (Radix sort using Counting Sort (RCS))

Radix sort is one of the applications of the SPLASH−2 application suite. It is based on the counting
sort algorithm and it is written in the C−language. In each iteration a histogram is generated over the
keys. This histogram is used to permute / sort the keys into an array for the next iteration. The
algorithm first counts to determine the rank of each key −its position in the output order− and then
permutes these keys to their respective locations. 

The program consists of the same classes as radix sort using bucket sort. In the class
‘Radixsort’ the histogram is generated by first building a frequency table of the numbers to be sorted.
After the histogram is built, the numbers to be sorted are moved into an array according to their
position in the histogram. This is repeated for the next iteration.

6.3  Parallelism

The main idea to parallelize Radix sort is as follows: divide the numbers to be sorted over the CPUs.
Each CPU sorts its own numbers and then merges the numbers into one sorted array.

Radix sort using bucketsort (RBS) follows the main idea. The integers to be sorted are
distributed over the CPUs. Each CPU uses the sequential radix sort algorithm to sort its own numbers.
After each CPU has sorted its numbers the numbers are merged into one array. The first half of the
CPU pool merges its numbers with the other half of the CPU pool, then a quarter of the CPU pool
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merges its numbers with the other quarter and so on. For example, if there are eight CPUs in the pool
of CPUs CPU1 to CPU4 start merging their numbers with CPU5 to CPU8. Next CPU1 and CPU2
merge their numbers with CPU3 and CPU4. The first CPU finally contains the sorted array of
numbers.

The SPLASH version of radix sort (RCS) works somewhat differently. The array of keys to
be sorted is partitioned into regions. Every CPU gets a region to sort. The merging is done during the
process of sorting. On each iteration three phases can be distinguished:

• LocalSort: Each CPU sorts its own keys using the sequential splash−radix sort.
• Histogram merge: After each CPU has built its own (local) histogram, the histograms are merged

into a global histogram which determines for each key owned by a processor where it should be
stored. The merging involves computing a vector prefix sum and a vector sum. 

• Permutation: After the global histogram is determined all processors move their keys into their
destination regions.

During the histogram merge phase a combining tree algorithm [11] is used to combine partial results
and to send the vector sum to every other CPU. The amount of communication during the
permutation phase is a subset of all−to−all communication.

Multi−threaded

With the multi−threaded version of RBS the distribution of the problem task is accomplished by
splitting the array to be sorted into parts. Each thread receives a copy of a part of the array and sorts
its part. After each thread has finished sorting its part, half of the threads start merging their array
with the arrays of the other half of threads, and so on. Each thread has direct access to the sorted array
of other threads, but should only start merging when the other threads have finished sorting. This is
accomplished by using a barrier.

The multi−threaded version of RCS is also based upon the SPLASH−2 code. The
distribution of the problem task is accomplished by dividing the array of integers to be sorted into
regions. Each thread gets access to a region and sorts its own region. After each thread has built its
local histogram they start merging their histograms into a global histogram. The global histogram is
shared among all threads, each thread has access to it, and it is used to determine the position of each
key. For the global histogram a tree−like datastructure is used because this datastructure improves the
efficiency of the merging of local histograms and reading from the global histogram. Since threads
merge their arrays into the global histogram, synchronization is necessary. This is done with the
wait()−notify() methods. When threads move their keys into the sorted array no synchronization is
needed, because every key has a unique position. But a key can be placed in a region of another
thread. So the next iteration of sorting must begin after all threads have moved their keys. This is
accomplished with the use of a barrier as well.

Manta’s Remote Method Invocation

With RBS two classes can be distinguished, a master class, which forms the main program and a
worker class, which does the actual sorting. Both master and worker classes are remote. The master is
remote so that workers can get the address of the other workers when they need to merge their data.
Each worker receives a copy of a part of the array to be sorted from the master and starts sorting it.
During sorting no communication is necessary. Only when the worker objects start merging, some of
the workers need to send their array to the other half, so communication is needed.

RCS contains the same classes as radix sort using bucketsort. Each worker receives the keys
in their region and builds a local histogram. In this phase no communication is needed. During the
histogram merge, all−to−all communication is necessary since the global histogram is shared among
all worker objects. Each worker object needs to know what the other objects have merged. Because
the global histogram is shared and every worker object reads and writes to the histogram,
synchronization is necessary so that each object works with the correct values. This is accomplished
through wait()−notify() methods and barriers. During the movement of the keys communication is
only needed when keys have to be moved into another region. No synchronization is necessary
because every key has a unique position. But between every iteration of sorting synchronization is
necessary, because every worker object has to wait until all keys are placed into their correct position
before sorting its region.

It should be noted that Manta does not support broadcasting. So during the histogram merge
each worker does RMI calls to the other ones.
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Java’s Remote Method Invocation

The idea of RBS and RCS with Java RMI is the same as with Manta RMI only the implementation is
somewhat different. Communication between objects is accomplished through interfaces. A
difference with Manta is the use of a centralized object which decides if a Master class or a Slave
class should be created depending on the host−number. Java does not support broadcasting either.

6.4  Results

Below several graphs are given that show the performance of RBS and RCS with Sun Java and the
Manta system. Performance is measured using different input sizes and a variable number of CPUs.
Unfortunately, there are no results of RCS with Sun Java RMI because Java continuously crashes.
With RBS, Java could not handle lists containing more than 500000 numbers. 
Java also has trouble with RBS on more than 8 CPUs. The multi−threaded versions were only tested
on a machine containing 2 CPUs. 
All performance measurements can be found in Appendix B.

RBS

With RBS figure 6.1 shows that Manta is somewhat faster than Java. With an input size of 500,000
numbers the difference is less than with an input size of 100,000 numbers. This is probably due to
some overhead of the JIT, which is relatively bigger with small problem sizes. 

With the multi−threaded version of RBS Java gained a speedup of approximately 1.42 with
100000 numbers and 1.39 with 500000 numbers (figure 6.2). The efficiency fluctuates between 0.69
and 0.71.

With the RMI versions the speedup gained with Manta is also higher than with Java. With
RBS Manta reached a speedup of 9.18 with one million numbers on 32 CPUs (figure 6.3b), while
Java reached a speedup of 2.26 with 500,000 numbers on 8 CPUs (figure 6.4b). Figure 6.3c and 6.4c
show that the efficiency of Java on RBS decreases at a faster rate than that of Manta when the number
of CPUs increases.

     Fig. 6.1 Sequential RBS Fig. 6.2 Multi−threaded RBS

Fig. 6.3a RBS Fig. 6.3b RBS Fig. 6.3c RBS
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Fig. 6.4a RBS Fig. 6.4b RBS Fig. 6.4c RBS

RCS

The Splash version (RCS) is much faster than RBS, up to a factor 8.2 with Java and a factor 7.69 with
Manta (figure 6.1 and figure 6.5). This is due to the many simple operations in RCS. With RCS
Manta is somewhat faster than Java (figure 6.5) as well. The multi−threaded Java version of RCS
gained an average speedup of approximately 1.54 (figure 6.6). The efficiency fluctuates between
0.625 and 0.845.

With the RMI versions Manta gained a speedup of 6.95 with 3,000,000 numbers on 16 CPUs
(figure 6.7b). After 16 CPUs the speedup of Manta decreases. This is caused by communication
overhead. The speedup is less than with RBS because the sequential version of RCS is already very
fast, which makes it harder to gain speedup. The efficiency of the Manta declines as the number of
CPUs increases (figure 6.7c).

Fig. 6.5 Sequential RCS

Fig. 6.6 Multi−threaded RCS
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Fig. 6.7a RCS Fig. 6.7b RCS Fig. 6.7c RCS

Manta RCS Vs. C RCS

Still the Manta version of RCS is approximately a factor 2 slower than the C−version of RCS (written
at the VU) with 3,000,000 numbers (fig 6.8a). This is caused by the Java language itself and the fact
that broadcasting is not supported by Manta and Java. With the C−version the global histogram is
broadcasted. Also the C−version makes use of pointer arithmetic which is not possible in Java. The
C−version gained a speedup of approximately 10 with 3,000,000 numbers on 32 CPUs (figure 6.8b).

          Fig. 6.8a Fig. 6.8b

In both RBS and RCS no linear speedup is reached. With RBS on Manta there is a loss of 71.4% on
32 CPUs. From figure 6.9a it can be seen that this is due to the merging time and the communication
time. The merging time is the time needed to merge all the local sorted arrays and the communication
time is the time needed to move the arrays from CPU to CPU. The sorting time is the time needed for
each worker object to sort its numbers. With 32 CPUs the merging and communication time take
71.4% of the total time. This is exactly the loss that occurred. 

RCS had a loss of 57% on 16 CPUs. In figure 6.9b the permute time is the time needed to
calculate the position of the keys and move them to their correct position. The merge time is the time
needed to merge the local histogram into the global histogram. Both times include the communication
time. The sort time and the histogram time show the time needed for the local sort and for building
the local histogram. From figure 6.9b it can be seen that the merging time increases linearly (or
more), when the number of CPUs increases. With 16 CPUs the merging time takes about 33−35% of
the time. The permutation time also decreases slowly from 54−55% on 2 CPUs to approximately 35%
on 16 CPUs and 28% on 32 CPUs. With 16 CPUs the permute time is not even halved. Thus on 16
CPUs the permutation time and merging time almost completely cause the loss of 57%.
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Fig. 6.9a Breakdown of RBS Fig. 6.9b Breakdown of RCS
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7  Water

7.1  Introduction

Water [13, 15] is an N−body simulation that computes how H2O particles move in an imaginary box.
It can be used to predict a variety of static and dynamic properties of liquid water. This program
requires lots of floating point computations. Also interactions between molecules and between atoms
inside a molecule exists. Interaction between molecules is accomplished by means of gravitational
forces. Water is one of the applications of the SPLASH application suite.

The computations are performed over a user−specified number of timesteps. Every timestep
involves setting up and solving the Newtonian equations of motion for the water molecules in the
cubical box with periodical boundary conditions, using Gear’s sixth−order predictor−corrector
method. The total potential energy is computed as the sum of intra− and inter molecular potentials.
The box’ size is computed to be large enough to hold all molecules. This implementation of water is
based on the Orca implementation [12].

7.2  The sequential algorithm

The structure of the program can be divided in a number of steps:
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Setup scaling factors and constants

Read/calculate positions and read velocities

Compute intra and inter molecular forces once to estimate accelerations

Calculate predicted values of atomic variables

Compute intra molecular forces for all molecules

Compute inter molecular forces

Calculate corrected values from predictions and computed forces

Put molecules back inside the box if they got out

Compute kinetic energy of the system

Should results be printed?

Compute Potential energy and 
print results

Another Timestep?

End

No Yes

No

Yes



During initialization, the program reads input data like the number of timesteps, the duration of a
timestep, the number of molecules that should be simulated, their velocities and how often the results
should be printed. Initial positions of molecules can be read or calculated. The size of the box is
calculated together with some other input dependent and independent constants. Finally some
implementation dependent initializations are done. 

After the initialization phase, the program repeatedly does predictions, calculates intra and
inter molecular forces, calculates the kinetic energy, places molecules that moved out of the box back
inside and corrects the predictions. For the calculation of inter molecular forces only pairs of
molecules that have a distance of less than half a box are considered.

The main data structure is the molecule object. Every molecule is represented as an object
containing a three−dimensional array ‘f’, and a one−dimensional array ‘‘vm’, as can be seen below.

class Molecule {
double[][][] f; //usage: f[max_order][nr_directions][nr_atoms]
double[] vm;

}

The‘‘f’ field of a molecule contains various kinds of values, the first seven entries of the first
dimension represent the position (displacement), velocities, acceleration, and subsequent derivatives.
The last entry contains the force upon a certain atom. The second dimension contains the various
directions (XDIR, YDIR, ZDIR), the third dimension contains the atoms of a molecule (H1, H2, O). A
possible access looks like: molecule.f[FORCES][XDIR][H1]. The ‘‘vm’’ field contains intermediate
results.

Calculation of the inter and intra−molecular forces and the kinetic and potential energy is
put in one class ‘ForcesEnergy’. The reason for this is that the data needed to perform these
calculations is almost the same. The data is then given once, during creation of the object.
Predictions, corrections and boundary checking are implemented as methods in a class called
‘‘PredCorr’. The class ‘Water’ starts the applications and reads the input data.

There are also some constants that are used by almost every class. Instead of defining them
in each class that needs them, these constants are put in an interface ‘ConstInterface’. Every class that
needs these constants implements the interface.

7.3  Parallelism

The main structure of the program is the same as the sequential algorithm except that the work is to
be executed by more than one CPU. Distribution of the work is achieved by partitioning the array of
molecules over the available processors. So each processor ‘owns’ a number of molecules and
performs all computations necessary for those molecules. The computations to be performed are the
same as for the sequential algorithm.

As soon as the input data is read or calculated, and part of the initialization is done, the
molecules are assigned to the processors. The distribution of molecules is done statically. Each
processor then calculates the intra– and inter−molecular forces in order to initialize some variables of
a molecule. Next each processor performs the necessary calculations. Performing these calculations is
done ‘‘timestep’’ times. A scheme of what each processor does is given below.

Initialization:
− Calculate intra molecular forces to initialize each molecule’s forces using its own position
− Calculate inter molecular forces to estimate the accelerations of the molecules. As the function

name suggests, other molecules are also involved and they can reside on other processors. Only
interactions of molecule pairs that have a distance of  less than half a box’ size are considered. 

Every timestep:
− Predictions. The position and derivatives of each molecule are updated.
− Calculate intra molecular forces. Each CPU calculates inter molecular forces for their own

molecules and updates them. So no communication is necessary.
− Calculate inter molecular forces and update molecules. The inter molecular forces are only

calculated for molecule pairs that have a distance of less than half a box. This method requires
communication between molecule pairs.

− Correct some predicted values. Each CPU corrects its predicted values. No communication is
necessary.
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− Check the boundaries, if molecules got out of the box put them back in. Again no communication
is needed.

− Calculate kinetic energy. Every CPU calculates its kinetic energy based on the velocities of its
own molecules.

− If results should be printed, calculate potential energy en print some results. The calculation of
the potential energy also requires positions of molecule pairs that have a distance of less than half
a box. So communication is needed.

In order to calculate inter molecular forces (for the initialization and for each timestep) between
molecule pairs the distance between these molecules is needed. To calculate these distances the
positions of the molecule pairs are needed. Since molecules can be stored on other CPUs,
communication is needed to acquire those positions. During the calculation both molecules must be
updated. Again communication  is needed if the molecules reside on a different CPU.

The calculation of the potential energy also requires the position of all molecules within half
a box’ distance. No updates to molecules are done, only the positions are read. Only some shared
variables must be updated in order to print some results.

To print results each processor maintains some local variables. These variables are summed
into shared variables. Summation of these local variables into shared variables requires extra
communication and synchronization to avoid lost updates. All other calculations mentioned are just
calculations on molecules and variables, no communication is necessary.

Multi−threaded

The multi−threaded version of water follows the parallel algorithm exactly. After the input data is
read and some global variables are set, the master object distributes the work to its worker−threads.
Distribution is done by giving each worker−thread a begin index and an end index of the molecules to
work on. The calculations of the forces, energy, predictions and corrections are the same as the
sequential algorithm, thus the same classes and datastructures as those in the sequential algorithm are
used.

Communication during the calculation of the inter molecular forces and the potential energy
is accomplished by giving each processor a pointer to the array of molecules. Updates are written
directly to the molecules, even if one of the molecules is owned by another thread. No
synchronization is needed because threads that are calculating the ’interf’ read the positions (or the
acceleration during initialization) of molecules and update the forces of those molecules. For the
calculation of the potential energy only the positions are read, nothing is updated, so no
synchronization is needed. 

There are some points of synchronization i.e. after the calculation of the intra molecular
forces, after calculation of the kinetic and potential energy and after each timestep. After these
calculations some shared variables should be updated. Synchronization during these updates is
accomplished through the use of synchronized blocks, where a global variable must be locked before
a thread can perform its update. Since threads can only continue after all updates have taken place,
they have to wait for each other. This is done with the use of barriers. The shared variables are mostly
used for printing some results.

Manta’s Remote Method Invocation

With Manta RMI the master object distributes the work by giving each worker object a part of the
array of molecules together with some variables. Both the master object and the worker object are
remote. The master is remote because every thread must get references to the worker object(s). After
the distribution each worker object begins with the initialization of the molecules and then starts
performing each timestep. The classes and datastructures used are the same as those in the multi−
threaded version and the sequential algorithm. 

The Manta RMI implementation is based on the parallel algorithm described earlier. Each
CPU receives approximately the same number of molecules. No provision is made to dynamically
balance the load. This is very hard to achieve and results have shown that the load imbalance is very
small.

To optimize the communication between molecule pairs message combining is used. The
idea is that to obtain positions of other molecules each CPU asks approximately half of the other
CPUs for the positions of their molecules before the ‘interf’ is performed. A naive algorithm is that
during the calculation of the ‘interf’ each CPU asks explicitly for the position of the molecule on
another CPU. Thus an RMI call is performed for every other molecule that resides on another CPU.
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With message combining the communication time is greatly reduced. This is because the number of
RMI calls performed per CPU to obtain the positions of molecules is approximately half of the total
number of CPUs. With the naive algorithm the number of RMI calls per CPU is approximately half of
the number of molecules. The number of molecules is usually much greater than the number of
CPUs. In the worst case, when positions of molecules received earlier are not remembered, RMI calls
have to be done for each molecule a CPU owns, with approximately half of the other molecules. The
number of RMI calls can then increase to n2 /2c (where n is the number of molecules and c is the
number of CPUs). 

A consequence of message combining is that the amount of data send/received in each RMI
is greater than with a naive algorithm. But still it is faster, because the time loss during the latency
does not increase that much. 

The positions received are kept in a four dimensional array. Updates of molecules on other
CPUs when calculating the’‘interf’ are also kept in a four dimensional array. These updates are sent
after the total calculation of the ‘interf’, again using message combining. Each CPU receives the
updates of all its molecules in one message. Sending the update afterwards is possible because the
updates are not needed during the calculation of the ’interf’.

We also tried a pool of threads in order to make the communication faster. Java uses
synchronized communication, thus when a RMI call is performed the CPU has to wait for an answer
before it can continue with other work. By using a thread to execute the RMI call, the CPU can
continue with its work, like starting another thread to handle another RMI call. The idea is that
having several threads handling the RMI calls instead of waiting for each RMI call, the
communication time can be overlapped with the computation time. In our case it did not increase
performance. Probably the bottleneck was   the marshalling / unmarshalling of the data.

Another optimization is to explicitly call the garbage collector from the application. By
explicitly calling the garbage collector every CPU starts garbage collecting at the same time. So it is
known beforehand at which point all CPUs will collect garbage. This is done instead of letting each
CPU decide for itself when to collect garbage, because that can lead to unwanted side effects (each
CPU can collect garbage at a different time and can delay the current iteration). Explicitly calling the
garbage collector saves time. Also the garbage collector is not called on every iteration. Instead it is
called every other iteration. This has as effect that only these iterations will take a little bit longer.
This makes the process of garbage collecting more deterministic.

Updates of shared variables are accomplished with the use of barriers to synchronize
updates. 

Java’s Remote Method Invocation

The Java RMI implementation is almost the same as that of the Manta RMI implementation of water,
except for the RMI which is done using Java’s communication structure. Also message combining is
used to reduce the amount of communication. Explicitly calling the garbage collector is also done. At
the start of the application the program maintains an array of worker−interfaces so that the
communication with other workers becomes faster. Barriers are used to synchronize the updates of
shared variables. We also tried a pool of threads but it did not quite work well.

7.4  Results

The graphs below show the performance of Water using Manta, Java and Orca with 1728 molecules,
2 iterations. Again with Java measurements with more than 4 CPUs were not possible because Java
crashes. Also measurements with Java are done without the JIT compiler because with the JIT
compiler Java gives wrong answers when run on more than one CPU. This is due to the large number
of parameters that must be passed on. Somehow the JIT seems to pass the wrong (nil) values. This is
a bug in the JIT compiler. Performance measurements can be found in Appendix C.

The multi−threaded version of Water with Java gave incorrect results due to a bug in Java.
Sometimes updates to shared variables seem to get lost, while these updates were performed inside a
synchronized block. So there are no results of the multi−threaded version of water, otherwise we
would be giving results that are not very reliable.

From figure 7.1 it can be seen that Java without the JIT is a factor 5 slower than Manta and a
factor 17 slower than Orca on one CPU. Manta is a factor 3.37 slower than Orca on one CPU. With
the JIT compiler on one CPU (then the JIT performs well) Manta is only a factor 1.26 faster and Orca
a factor 4 faster. The cause of the Manta and Java system being slower than the Orca system on one
CPU is, especially, due to the better optimization of floating point calculations. Another factor of
influence is the Java language itself.
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Fig. 7.1 

Both Manta and Orca gained almost linear speedup. From figure 7.2 it can be seen that both achieved
a speedup of 30 on 32 CPUs. From that figure it can also be seen that the speedups of Manta are
almost the same as the speedups of Orca. Java also achieves good speedups; 1.9 on two CPUs and 3.2
on four CPUs (figure 7.4a). Thus Java reaches almost linear speedup too. The efficiency of Manta
fluctuates between 0.94 and 0.99 (figure 7.4b). So the efficiency is high and stable. With Java the
efficiency for 2 and 4 CPUs is also quite high (0.97 on 2 CPUs and 0.81 on 4 CPUs). After 4 CPUs
the Java system fails.

The explicit call of the garbage collector also improved the results of Manta. For 4 to 16
CPUs the explicit call of the garbage collector improved the results by approximately 2%−5%. For 2
and 32 CPUs it made no difference. With Java it did not improve the results much. With 2 CPUs the
improvement was about 0.3%.

Fig. 7.2 Water

Fig. 7.3a Water Fig. 7.3b Water
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Fig. 7.4a Water Fig. 7.4b Water

Still the Manta system has a loss of approximately 6% on 32 CPUs. This loss is caused by some
communication overhead. This can be seen from figure 7.5 where ’fptime’ is the time necessary to
calculate the inter molecular forces and the potential energy, and the‘‘intraf + predcorr’+ misc’ is the
time to calculate intra molecular forces, predictions, corrections etc. Calculations of the inter
molecular forces and the potential energy acquire most of the time as can be seen from the figure.
During these calculations also some preparations for later communication are made. Temporary
results are kept in four−dimensional arrays in order to send them later to other CPUs (message
combining). These preparations can be seen as part of the communication. 

Fig. 7.5 Water
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8  Checkers

8.1  Introduction

Checkers has been a popular game all over the world for hundreds of years, and many variations exist
nowadays. Only two versions, however, have a large international playing community. What is
commonly known as Checkers (or draughts) in North America is widely played in the United States
and the British Commonwealth. This variation is played on a 8x8 game−board, with checkers moving
one square forward and kings moving one square in any direction. Captures take place by jumping
over an opposing piece, and a player is allowed to jump multiple men in one move (known as double
jumps). Checkers promote to kings when they advance to the last rank of the board. Another major
version of Checkers (the so−called International Checkers) is popular in the Netherlands and the
former Soviet Union. This game is played on a 10x10 board, where checkers may capture pieces
backwards as well and kings are allowed to move many squares in one direction in a single move, just
like bishops in Chess. The program mentioned in this document implements the 8x8 Checkers
variant.

8.2  The sequential algorithm

The sequential Java Checkers application is based on a checkers program written by Don Dailey for
the Cilk parallel C/C++ language library [20]. The original Cilk code uses the negamax game−tree
searching algorithm with alpha−beta pruning and implements iterative deepening. The quiescence
heuristic is used as well. This program was ported to Java and extended to add support for double
jumps. Furthermore, the game node evaluation−function was improved and a transposition table is
used to reduce search overhead.

8.2.1  Overview

The entire system consists of two major components, a client application and the main search engine.
These two applications run completely separate from each other. Whenever the client wants the
search engine to determine the best move for a given game situation, it sends a (Sun) remote method
invocation with this game position (together with the minimal search depth) to the engine. The game
engine then starts to search the game−tree for the best move. As soon as it is finished, the result is
sent back to the client. Figure 8.1 shows the main application structure.

8.2.2  Negamax with alpha−beta pruning

One of the most efficient serial game−tree search algorithms is Negamax in combination with alpha−
beta search, because it can avoid searching the entire tree by proving that certain sub−trees need not
be examined (can be pruned). The alpha−beta algorithm used can substantially reduce the size of the
tree, especially if the best moves are considered first. The exact algorithm is explained in [1].
Techniques such as iterative deepening, the use of a transposition table, refutation, chopper and the
history heuristic can greatly improve move ordering. The first two are used in our application [28,
30].

Many other search algorithms exist nowadays, such as SSS* and MTD(f), but these are not
as common as alpha−beta search and are more difficult to implement [27, 29].

8.2.3  Evaluation function

Since Cilk’s tree−node / game−position evaluation function was rather primitive (counting the
number of checkers and kings and multiplying each with a predefined value) we decided to add some
more advanced heuristic components based on Chinook’s evaluation function [21, 22]. Our function
incorporates the checker−advancement heuristic, and takes back−row occupation and piece−centering
in consideration as well to improve the application’s level of play. 

26



Client Server

Registry

Engine

CPU

Position
Depth

Best move

Creation

Bind

Lookup
EngineInterface

Creation

Fig. 8.1

8.2.4  Transposition Table

Although the game’s search space is usually referred to as a tree, it is actually a directed acyclic
graph, because game positions can be reached via different sequences of moves. These positions are
called transpositions. A transposition table (TT) is used to save information about visited nodes, in
the event that the same nodes are revisited later, which allows one to eliminate the need to re−search
large portions of the ‘tree’.

The transposition table is basically a hash table of previously evaluated game positions, also
called nodes. After a node is searched and evaluated, we create or update the corresponding entry in
the TT. The information stored includes the node’s score, the move that leads to this score, the search
depth and a special tag value. Then, before searching a node, we first check to see if it is already
present in the TT. If this is the case, both tag values correspond and the node’s depth of search was at
least as deep as the one to score now, we can skip the search and return the evaluation score
immediately. However, often when we get a TT hit (a succeeding lookup), the depth is insufficient
for the current search. But even in this case the TT is still useful because it gives us the best move
found by an earlier search, and often the best move at a shallower depth is the best move at a deeper
depth. So, by using this move as the first to evaluate, we increase our chances to predict the best
move for the given position which reduces the search overhead because more nodes are likely to be
pruned.

Since the TT is implemented as a hash−table, we need to be able to generate a hash−code for
each game position. We did this as follows. First, a table with random values is generated for all
board fields and all different game pieces. Then, to calculate a position’s signature, the various values
are XOR−ed together, which allows us to determine the hash−index by taking this number’s first few
bytes. The last few bytes determine the entry’s so−called tag value. The idea of using XOR−ed values
allows the programmer to incrementally determine a position’s signature [31]. When moving a piece
from position A to B, the piece has to be XOR−ed with A’s signature and XOR−ed with the same
signature for position B. These two XOR operations remove the need to recalculate the new signature
from scratch, which would have taken significantly more time.

Whenever two different game positions coincidentally map to the same index, they will
usually have another tag value, so their difference will be detected. Although there is a non−zero
chance that multiple positions will map to the same signature, most game−playing applications just
accept this risk.
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8.3  Parallelism

All versions of Checkers described in this paper use the two components mentioned earlier. The client
application is a straightforward graphical Swing program that is exactly the same in each variant. It
shows the checkers board on which the user can click with the mouse to move a certain piece. A
pull−down menu option gives the user the opportunity to send a request to the engine to determine the
best move for the current board position. So, although there is communication between these two
components, the actual parallelization takes place where it matters: in the game search engine. From
now on, we will no longer look at the client application, but focus on the search engine instead. The
overall system as used in the various parallel implementations is shown in figure 8.2.

8.3.1  Multi−threaded

Like the sequential program, it is the Server class that starts the engine. The engine on its turn creates
the transposition table and all CPU slave threads. Because the search task needs to be split in various
sub−tasks (in order to solve the problem in parallel), a job−queue is created [24]. This data−structure
is used to temporarily store jobs, which can be fetched by any slave thread on a remote CPU
whenever it wants a job to work on. Jobs consist of a game position in combination with a valid move
for that position. The resulting game position is evaluated by the slaves. With the multi−threaded
application, all valid moves from the top−level game−position are put in the job−queue. Then, when
a job is finished, its evaluation score is put in another centralized queue maintained by the engine
called results−queue.

Young Brothers Wait

An advanced search algorithm is used in the multi−threaded application and most parallel Manta
variants to reduce search overhead, called the Young Brothers Wait  Concept [26]. Quote:

YBWC: The search of a successor v.j of a node v in the game tree must not be started before the
leftmost brother v.1 of v.j is completely evaluated.

Although YBW restricts the use of parallelism, it can strongly narrow the search window for the right
sons of v because of the result of v.1, possibly leading to more cut−offs and thus reducing search−
overhead.

As said, there is a serious disadvantage to YBW. Parallelism can only start when the leftmost
node of the tree has been evaluated. Then its brothers may be evaluated in parallel. However, in
Checkers, the number of brothers is usually quite small compared to the number of processors. In
effect, YBW causes a point of time at which all but one processor are idle for every inner node of the
leftmost variation (called synchronization nodes). Unfortunately, this effect is worsened by our use of
iterative deepening. Therefore, we use YBW in our application only at the root of the game tree, to
restrict the number of synchronization nodes and to reduce processor idle time.

Abort

Whenever the alpha−beta algorithm discovers that at least one child has a greater score than beta,
there is no need to search the rest of the children (this is called failing high). Thus, if other threads are
already working on these children they have to be signaled to stop by sending an abort message [1].
However, this is not applicable to our program, since tasks are only distributed at the top of the search
tree. Slaves do not further distribute their work, and can simply stop iterating over the children and
return if one node fails high. Only the engine distributes work, but its children cannot fail high
because the beta value of the game−tree’s root position is defined as ∞ (infinity). No child will have a
higher score than that, so all children will have to be evaluated.

8.3.2  Manta Remote Method Invocation

We have built multiple applications using Manta’s ’remote’ keyword which use different ways of job
distribution (load balancing) and different schemes to distribute the transposition table.
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Fig. 8.2

Root Depth Vs. Fixed Depth search

Initially, all valid moves from the top−level game−position were put in the job−queue. We will call
this root depth (RD) search. It works well when using only few slaves (CPUs), but because the
average tree branching factor of Checkers is quite small (especially on a 8x8 board) the number of
jobs becomes too small to equally distribute the jobs among the available resources when using more
than four CPUs. Therefore, the algorithm was altered so that the engine would first search to a
specific depth before putting the jobs in the queue. From now on, the term fixed depth (FD) search
will be used to refer to this algorithm. Although RD search does not scale well, its relatively small
search−overhead is the main reason to mention it here.

FD search greatly increases the number of jobs, thus improving the load−balancing.
Unfortunately, it has some disadvantages as well. First of all, the engine has more work to do since it
has to deliver jobs at a deeper depth, which means it has to go into recursion to determine the
positions and their valid moves at that depth. Parallel execution can only start when all jobs have
been created. Moreover, a special tree has to be constructed to be able to determine the root’s
evaluation score when all slaves have finished. Then all tree leaves have their appropriate values and
the engine can work its way back to the root of the tree to calculate its score and determine the move
that leads to that score.

Another substantial problem introduced by the fixed depth search has to do with the alpha−
beta algorithm itself. With the original RD search the engine immediately adjusts the root’s alpha
value whenever a slave has finished a job. The engine then forwards this so−called alpha update to
the job−queue, so jobs that are to be evaluated in the future would have a bigger chance of being
pruned because of the reduced search window. More importantly, the engine informs all working
slaves about the alpha update, which may reduce their search window as well. 

When using FD search these alpha updates are not forwarded to the job−queue and/or the
working slaves, since the slaves do not share the same parent game position. The alpha update is only
of concern to those slaves that have the same parent node. More administration work would be
necessary to locate all slaves that are working on the child−jobs of that parent. Because the alpha
updates are not propagated to the slaves, they all start working with a maximum search window. This
means less sub−trees can be pruned and (much) more nodes have to be evaluated, implying search−
overhead.
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Distributing the Transposition Table

There are various ways to distribute the transposition table. Much research has been done to find the
best distribution strategy, but results show that it depends strongly on the kind of application [23, 24].
For the Manta RMI application, we have implemented 3 different ways:

• Local transposition tables
• Partitioned transposition tables
• Replicated transposition tables

Using a local transposition table on every processor has the advantage that each table lookup or
update can be performed without the need for communication. So this distribution scheme has no
communication overhead on behalf of the TT at all. Unfortunately, the chance of a TT hit decreases
when the number of CPUs is increased because the chance that the CPU has already evaluated the
same game position before decreases. This reduces the effectiveness of the TT, inducing search−
overhead.

With the partitioned scheme, each CPU stores an equally sized part of the entire TT. Both
lookups and updates are done remotely using RMI. Only if the lookup or update takes place in the
part of the TT that resides on the same machine that wants to do the lookup or update, it can be
performed without communication. With an increasing number of CPUs, this chance is becoming
smaller, which may lead to communication overhead. However, with a large number of machines, the
amount of communication scales almost linearly with the number of machines. Especially the
lookups are expensive, because the client processor has to wait for the answer to arrive before it can
continue (synchronous communication). Table updates can be done asynchronously, but unfortunately
the Java language does not support asynchronous communication. To simulate asynchronous
communication, a separate thread can be created to perform the RMI while the main alpha−beta
thread can continue its execution. This solution was not successful because the overhead of thread
creation and thread cleanup completely overshadows the advantage of the asynchronous
communication.

When using the replicated TT variant, each machine has its own copy of the TT. This has
the advantage that table lookups can be done locally, without communication. On the other hand,
when a TT node insertion or update takes place, a broadcast message has to be sent to all slaves to
update their replicas. Since a broadcast is not available in the Java language, it had to be programmed
by hand. Our solution is derived from another application, ASP [25], using binary tree broadcast.
Every slave sends RMI calls to the two underlying slaves of the imaginary tree, until all slaves have
received the message. The main problem with replicated tables therefore is the communication
overhead required for update operations.

8.3.3  Sun Remote Method Invocation

Apart from the differences mentioned earlier between the Manta and Sun system to create slave
threads, our Sun version of Checkers does not significantly differ from the Manta one. Because the
Manta application performed best with a partitioned TT, we have implemented the Sun version with a
partitioned TT only.

8.3.4  Optimization

We have used various methods to improve the speed of the Checkers application. Multiple strategies
to optimize sequential execution time and to limit communication overhead have been implemented.

To lessen the amount of work for the garbage collector, most Java objects/structures have
been constructed by using as few bytes as necessary. For example, the class that stores a game
position uses bytes instead of integers for its board fields. Since many board positions are created and
destroyed during game−tree traversal (see the amount of ’nodes evaluated’ in the results section 8.4),
it is highly important to reduce the board object its size. Another way to reduce execution time was
by using a long integer (8 bytes) for a piece move, instead of using an object. Various kinds of bit
manipulations are performed to store and retrieve (double) moves, cutting down on memory usage
and object method calls.

In order to minimize communication overhead, message combining was used. Instead of
sending TT updates immediately, each machine stores the updates in a fixed−size buffer, sending the
entire buffer as one single message when it is full. This optimization greatly reduces the amount of
messages sent. Although the number of bytes sent remains unchanged, communication overhead is
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reduced considerably. On the other hand, message combining increases the chance of reading stale
information from the TT, implying search−overhead.

Another method used to limit the amount of RMI calls was by use of a so−called lookup−
threshold. This threshold value specifies the minimum depth (counting bottom−up) at which a TT
lookup may be remote. If the depth of search is less than that specific value, performing a remote
lookup may be even slower than just calculating its value locally. Therefore, the TT is neglected and
the node’s score is determined on the client machine itself. The same holds for a TT update. Updates
are always stored on the client machine, but only propagated to the other processor(s) if the depth of
search was above this threshold value. Although the lookup and update thresholds could have been
different values, we have chosen them to be the same.

8.3.5  Application testing

The following pages discuss the performance results of the various versions of Checkers. Each page
describes the properties of one particular implementation.

To measure the performance of the various Checkers implementations, the existing Swing
client application could not be used. Instead, a simple test object was written that sends RMI requests
to the engine asking for the best move for multiple game positions. A total of 6 RMI requests are
sent; three different game settings and their follow−up positions. The follow−up positions are used in
order to make strong use of the TT. The three game settings consist of the game opening, a random
mid−game board position and one position which has only one forced move, thus reducing the tree
branching and  − consequently − the number of jobs, considerably. All measurements are  available in
numeric format in Appendix D.

Debugging the Checkers application has proven to be somewhat troublesome. As in [1],
determining whether the application is correct can be very hard. Not only can the multi−processor
variants yield different moves as ’best move’ during the tests, even the evaluation score for that move
can fluctuate. Therefore, a minor programming mistake can easily remain unnoticed. Another
important task in testing the various Checkers implementations deals with tuning the application.
Clearly, determining the best performing values for the lookup threshold, the message buffer size, the
FD search depth and the best way to use YBWC can be time−consuming undertakings. Obviously,
these issues do not only apply to Manta but to Sun’s Java and other programming languages in
general as well.
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8.4  Results

Figure 8.3a shows the breakdown of the sequential and multi−threaded implementations. It consists of
seven different timings, namely the node evaluation time, the move generation time, the time
necessary to create the next tree node (thus perform a move), the TT lookup and update times and
the idle time. The miscellaneous value indicates everything not mentioned earlier, most importantly
the time spent in the alpha−beta algorithm itself, the recursion, tree node sorting, etc. 

Fig. 8.3b and 8.3c show the speedup and efficiency factors, while 8.3d shows the total
number of tree nodes that were evaluated during the performance measurement.

Fig. 8.3a

      Fig 8.3b Fig. 8.3c Fig. 8.3d

With the sequential program, Manta outperforms Sun by a factor of almost 1.3. 
As can be seen, the multi−threaded application using just one thread performs equally well

as the strictly sequential variant, evaluating just as many nodes. Surprisingly, the dual−threaded
program  performs worse than the one using a single thread. This is the effect of the increased number
of nodes that had to be evaluated. The dual−threaded variant is also suffering from some idle time,
most probably imposed by the forced−move game position from the test−set which yields only one
job, keeping one processor idle.
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Next are the results of the Manta RMI variant using root−depth search and a partitioned transposition
table. Because a message buffer size of 32 in combination with a lookup threshold of 2 gave the best
results, we will only show those measurements. When using a smaller lookup threshold value than 2,
the total execution time builds up although the amount of evaluated nodes decreases. That is because
the program’s bottleneck shifts from a search−overhead to a TT lookup overhead (not shown).
Increasing the threshold value importantly enlarges the search−overhead. Modifying the message
buffer size does not significantly alter the application’s performance.

The breakdown shows a few new timings. GNHandling and PNHandling denote ’TT node
lookup handling time’ and ’TT node update handling time’ respectively, which are both of minor
importance to the total execution time. The ’Message’ timings show the amount of time needed to
store the TT updates in the message buffer. All measurements are performed by using Java’s timing
function ’CurrentTimeMillis’ which makes it possible for each processor to store its own breakdown
bar. After all tests have completed, those bars are added up and the average values are determined.
Unfortunately, this solution leads to a problem. In order to measure idle time, the idle time counter
starts as soon as a job is finished and will only stop when a new one has arrived. Thus, the idle time
measurements are not quite accurate since engine idle time and the time necessary to show the search
results are included as well.

Fig. 8.4a

Fig. 8.4b Fig. 8.4c Fig. 8.4d

The graphs clearly show the most important problem of the RD search algorithm; the shortage of
jobs, leading to much idle time. With an increasing number of CPUs, the relative idle time becomes
larger. With 32 machines, idle time contributes for 80% to the total execution time. As an effect, the
maximum speedup (1.55) is achieved by using only four machines. It is also due to the search−
overhead. Notice, though, that the amount of nodes evaluated is not that much larger than the
sequential Checkers variant. With 32 processors this amount increases just slightly and ’only’ 3.28
times as many nodes are evaluated, a relatively small value compared to the FD search applications.

Another interesting application feature that can be drawn from the graphs is that the portion
of miscellaneous time remains nearly constant over a changing number of CPUs, while the other tasks
scale inversely proportional to the increasing number of processors. This is probably due to the
overhead imposed by the program’s engine which takes care of job creation and distribution. The
time spent in the engine remains constant over the number of processors. Because less incoming RMI
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calls have to be handled per CPU, the application’s total execution time slightly improves with an
increasing amount of processors.

Fig. 8.5a shows the performance of our Manta program using the fixed depth search
algorithm in combination with the Young Brothers Wait Concept. Here, a message buffer size of 8
performed best. A different threshold value has the same negative results as with the RD search
variant. When using more than four CPUs, an increased message buffer size leads to a large search−
overhead, since the TT is less often updated and thus less often useful (not shown).

Fig. 8.5a

Fig. 8.5b Fig. 8.5c Fig. 8.5d

The graphs clearly confirm that FD search is able to distribute the search problem more effectively.
Fig. 8.5a shows that, although the relative idle time is increasing with the number of CPUs, the lack
of jobs no longer stalls the speedup factor at four machines. Unfortunately, the use of FD also
increases the search space, which is the main reason that a maximum speedup of just 1.91 is reached
with 32 CPUs. More than 9 million nodes are evaluated in that case, 8¼ times as much as the
sequential variant. Thus, when compensating for the search−overhead, a max. speedup of 15¾ (on 32
CPUs) is reached. The poor efficiency then is mostly due to the relatively large amount of idle time,
even with FD. Our FD search creates jobs at 2 deep, counting from the root of the game tree. When
job creation would take place at a deeper depth, more jobs would have been created leading to less
idle time, but to a large search−overhead as well. Our choice is a search vs. idle−time −overhead
compromise, creating enough jobs to equally distribute them among the resources,  most of the time.
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The following graphs show the results of the Manta application without YBWC. The rules that
applied for the Checkers variant with YBWC apply to this variant as well, so we show the results for
the same message buffers size and TT lookup threshold.

Fig. 8.6a

Fig. 8.6b Fig. 8.6c Fig. 8.6d

This variant of Checkers performs best. Without YBWC, less synchronization between the machines
is necessary. Also, the number of evaluated nodes does not differ much. Apparently, our application
does not benefit that much from the reduced search window when using YBWC. A maximum
speedup of 2.22 is reached using 32 processors. Corrected for the number of evaluated nodes, the
score would reach 18.35.

The breakdown shown in Fig. 8.6a closely resembles the one in Fig. 8.5a. Except for the
miscellaneous and idle times, all timings scale inversely proportional with an increasing number of
CPUs. Interestingly, the highest efficiency is scored using only four CPUs in both applications. This
is a direct result of the extended division of the transposition table. When using four processors, the
chance that a TT lookup is local reduces by a factor 2 (from ½ to ¼). Because the threshold value is
used only for remote TT access, much less lookups and updates take place. This is the main reason
for the improved efficiency, together with the fact that idle time only increases with more than four
processors.
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The next graphs show the results of the Manta application without YBWC using a replicated
transposition table with a message buffer size of 128 and a threshold value of 4. Lowering either one
of these values results in a massive broadcast overhead. As can be seen, two new values have
appeared in our breakdown, namely the broadcast timings and the time spent in propagating an alpha
update.

Fig. 8.7a

Fig. 8.7b Fig. 8.7c Fig. 8.7d

Unlike our partitioned TT variants where TT lookups were relatively expensive, here the TT update
broadcast has a big impact on the total execution time. With a replicated TT, a lookup is always local
and can be done relatively fast. The TT updates on the other hand require a broadcast. The large
message buffer size and threshold values are mostly responsible for the search−overhead which is
even worse than with the partitioned TT applications. A maximum speedup of 1.31 is reached using
32 processors. In that specific case, processor idle time contributes for 57% of the total execution
time. Corrected for the number of evaluated nodes, the max. speedup would be 12.2.

One of the main reasons for the search−overhead with our parallel variants of Checkers, is
that the applications do not sort the tree nodes optimally. With our application, only the TT is used to
sort the possible follow−up nodes. If, for example, the history heuristic would have been used in
combination with the other heuristics that are implemented, node sorting would be improved. This
would allow more sub−trees to be pruned, especially when using multiple CPUs, reducing search−
overhead.
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Fig. 8.8a−d show the measurements for the FD Manta application with local transposition tables.

Fig. 8.8a

Fig. 8.8b Fig. 8.8c Fig. 8.8d

Graph 8.8d immediately shows the main bottleneck of this local TT variant: the huge search−
overhead. Because the machines do not share their information with each other, they often perform
the same work. With 32 CPUs, almost 17 times as many nodes are evaluated. As a direct result, a
speedup could not be reached. Even with 32 processors, the application takes longer to complete than
the sequential variant. A speeddown of 0.78 is scored, while the speedup corrected for the number of
evaluated nodes would reach 13.21.
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The next graphs show the results of the FD search, partitioned TT application written using the Sun
RMI system. This program was compiled and run with Manta to obtain timing measurements, since
the Java runtime system crashes. The best performance was achieved with a message buffer size of 8
and a threshold value of 2. Changing these values did not significantly alter the behavior of the
application.

Fig. 8.9a

Fig. 8.9b Fig. 8.9c Fig. 8.9d

The graphs show that this is the worst performing application of all variants. No speedup is achieved
at all, mostly because of the TT lookup overhead and the increasing portion of idle time. The huge
communication overhead is due to the fact that instead of the Myrinet network, fast ethernet is used in
this application. Corrected for the number of evaluated nodes, a max. speedup of just 2.20 is
achieved.

Taking all performance measurements in consideration, we can conclude that our parallel Checkers
implementations run rather inefficiently. The Sun Java application and the ’Manta Local TT’ version
both fail to reach a speedup whatsoever, suffering from a communication−overhead and a search−
overhead respectively. Our ’RD Manta RMI Part. TT’ Checkers implementation performs better,
reaching a maximum speedup of just 1.55 using four CPUs. Its main problem is the shortage of jobs,
leading to load imbalance. The fixed depth replicated transposition table variant is suffering from the
lack of an efficient broadcast implementation. Other reasons for the poor performance include the
lack of asynchronous communication and the large contribution of idle time in relation to the total
execution time. The use of the Young Brothers Wait Concept does not improve the performance of
our program because the amount of evaluated nodes does not decrease significantly, while extra
synchronization between slaves is introduced. For this reason, the fixed depth partitioned
transposition table variant without YBWC achieves the highest speedup of 2.22 using 32 CPUs.
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9  Problems

In this section we will discuss some problems encountered. They will be distinguished in the
following categories: Java’s usability for developing parallel programs, programming problems and
bugs in Sun’s JDK and the Manta system.

The usability of Java for developing parallel applications

The lack of asynchronous communication in Java can have a great impact on the performance of the
applications. We have used threads to simulate asynchronous communication but that gives rise to
other kinds of overhead like thread creation, garbage collection and context switching. This reduces
the benefits of asynchronous communication. 

The fact that broadcasting, multi−casting and all−to−all communication is not supported in
Java can also decrease the performance of the applications. Having to perform an RMI call for every
connection is very expensive and time consuming.

The lack of pointer arithmetic in Java can lead to some loss of performance. Sometimes
pointers can be very useful and fast especially with arrays. With SPLASH radix sort extra variables
had to be created to temporarily store results.

Object creation is very expensive. Creating temporary objects lessens the performance of the
application. So for a better performance the creation of temporary objects should be kept minimal, or
should even be avoided. This is against the OO paradigm.

According to the OO paradigm all the data within a class should be private (data
abstraction). If an object wants to access the data of another class, it should be accomplished through
method calls. But this has a negative impact on the performance of the parallel application if these
method calls are executed frequently. So one has to make a choice between good OO programming or
speed.

The times at which the garbage collector (GC) in Java’s runtime system is activated, is
nondeterministic. This can sometimes lead to performance problems, especially when all CPUs
collect their garbage at different times. When a CPU initiates the garbage collector, the running
thread is blocked until the GC has finished. So, incoming RMI calls are put on hold and outgoing
RMIs are only performed after garbage collecting. Thus, the process of synchronization between
multiple CPUs can be delayed because one or more CPUs can be collecting garbage.

Developing parallel applications with Manta takes place in a more intuitive manner. The
distribution of work and the creation of all the worker objects can easily be accomplished by a master
object in Manta. The number of worker objects that must be created can easily be arranged in the
master object. If more than one worker must be started in Sun Java, only one worker object can be
started from a master object. The other worker objects must be started manually on every other
machine.

Results from the Java implementation of water are different from that of the C−Orca version
and the Manta version of water. This is caused by the difference in floating point handling in Java,
Manta and C−Orca. Java has a strictly defined floating point model, 64−bit precision for doubles,
whereas the floating point precision for C−Orca and Manta depends on the computer−platform on
which they are run (80 bits on a x86 platform). This strictly defined floating point model of Java leads
to loss of floating point precision and loss of performance. Loss of performance because Java
repeatedly needs to convert the 80−bits precision into 64−bits precision on a x86 architecture.

Programming problems

There were a few problems that occurred in every application. One problem concerned the matter of
file creation used in the Sun Java RMI versions to locate remote objects. The problem is that the time
necessary to create the file and write the hostname is unknown at runtime. Thus, the objects that want
to read from the file have to wait some time before they can read from the file. And waiting is
something you don’t want to do in a parallel program. 

Another problem concerning the use of a file to read the hostname from (this is also
necessary for slave objects which can find the master object by reading its hostname from a file) is
that it often led to exceptions. More than once, the slaves had already been created but the master had
not written its hostname in the file, leading to IO−exceptions.

When using the SMP machine to test our multi−threaded applications, we encountered a
problem with the Java registry. It seems that whenever another person starts a registry process on the
SMP, our multi−threaded applications (that make use of Java’s RMI system as well, such as
Checkers) must use the same registry. Unfortunately, this resulted in ’Stub not found’ error messages,
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apparently because the other person’s registry does not have access to our application’s directory that
contains the appropriate Stub classes.

JDK and Manta system bugs

Another problem was the creation of slave objects when using Java RMI. Java’s RMI system seems
troublesome when the programmer uses many processors for parallel execution. More than once, we
got (runtime) IOExceptions, SIGSEGVs (segmentation violations), broken pipes etc. which must be
caused by the Java runtime system, since the programmer theoretically cannot produce these kinds of
errors in Java. Starting the Swing Checkers client application was sometimes causing similar
problems, even before a connection with the server was made. In certain cases the stub and skeleton
compiler (RMIC) crashed on a segmentation violation.

With water the JIT compiler gave incorrect results. This is caused by the fact that many
parameters have to be passed on to worker objects. Somehow the JIT passes on wrong values.
According to the Java language specification there is no limit on the number of parameters that can
be passed on.

The multi−threaded version of water makes use of synchronized blocks to update certain
shared variables. These synchronized blocks do not work properly. When using four or more threads
certain updates seem to get lost.

The biggest problem we had with Manta is the fact that it is a project which is in its early
stages. Numerous bugs were discovered.

One of the problems of Manta is that it doesn’t support kernel−space threads, caused by its
underlying thread package, Panda. A multi−threaded application therefore would not gain advantage
from a SMP machine, because only user−space threads are created which run on just one CPU. More
information on this subject can be found at the end of section 4.

With the Manta version of Water the floating point optimization produces different results
from the version without floating point optimization. This is caused by the 16th decimal which differs
in both versions. Since Water is very accurate with decimals this 16th decimal causes the difference
between the Manta version with floating point optimization and the one without floating point
optimization to be quite high (with 1728 molecules there is a difference of one, a deviation of
approximately 30%).
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10  Conclusion

This thesis describes the usability of the Java system and Manta system by means of four applications
(FFT, Radix sort, Water and Checkers) which are implemented using four different strategies
(sequential, multi−threaded, Java RMI and Manta RMI). Of each variant, the performance is
discussed. The ease of use to the programmer of both systems is  discussed as well.

Besides the several performance problems encountered with Java, the use of Java for parallel
application development is becoming more promising. Although the Sun Java version does not
perform well, the Manta version produces better and acceptable results. With the Water application
Manta achieved almost linear speedup. Still the scalability of Java with these applications is worse
than the scalability of C or Orca with the same applications. But with Manta the difference has
lessened. The Manta versions are a factor 2.5 slower on the average. These differences in
performance are mostly due to the lack of asynchronous communication and broadcasting which has
a great impact on the total latency. The poor floating point performance of Java, imposed by the strict
adherence to the Java floating point standard, also reduces the overall performance of the Java
versions. Other language features that have a great impact on the performance of Java are the lack of
pointer arithmetics and the fact that object creation is very expensive (see section 9).

Parallel programming in Java with RMI is feasible at least to coarse−grained applications.
However, the performance depends heavily on the structure of the communication. Using arrays or
objects as parameter of RMIs can exert a large influence on the performance, as the transmission of
large arrays and objects can effect the latency to a large extent because of network load and
serialization overhead. The lack of asynchronous communication makes it worse. Synchronizing
garbage collection by explicitly calling the garbage collector can improve the performance. Message
combining may improve performance as well.

Overall it can be stated that on these four applications, Sun Java using Fast Ethernet
performs worse than Manta using Myrinet. In all applications Manta is faster and gives better results.
Manta reaches higher speedups and better efficiencies, while Sun Java often crashes with multiple
CPUs.

The use of the remote keyword in Manta simplifies the work for a programmer. It lessens the
amount of programming code and it makes porting a multithreaded program to RMI easier. Also the
programmer does not have to know about registries, security managers, Java policies, file handling
(opening a file, reading data from a file, closing the file) etc.

Although Java lacks certain features like broadcasting and asynchronous communication,
parallel application development with Java RMI seems promising. With Sun Java the performance is
poor while with Manta the performance is acceptable. Taking the performance into account we
conclude that Java with Manta is more promising than Sun Java.
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13  Appendix A − FFT results

All timings are in milliseconds.

Sequential
Sun Java 1.2 (JIT) Pure FFT Total exec. time Communication

M=14 306 352 0

M=16 1240 1462 0

M=18 5367 6271 0

Sequential Manta

M=14 401 433 0

M=16 1796 1953 0
M=18 7879 8651 0

Sequential Orca
M=14 165 312 146

M=16 740 1559 708

M=18 3195 6563 2871

Sequential SMP Pure FFT Total exec. time Communication Barrier Speedup
M=14 140 162 0 0

M=16 612 726 0 0

M=18 2657 3150 0 0

Multi−threaded SMP
Single Thread
M=14 165 247 70 0

M=16 722 1132 400 0

M=18 3170 4868 1526 0

Multi−threaded SMP
Dual thread
M=14 88 139 38 8 1.17

M=16 377 611 206 24 1.19

M=18 1600 2725 905 89 1.16
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Unoptimized Manta RMI
1 CPU Pure FFT Total exec. time Communication Barrier Speedup Efficiency

M=14 460 795 338 0 0.54 0.54

M=16 1963 3297 1320 0 0.59 0.59

M=18 8747 15640 6834 0 0.55 0.55

2 CPUs
M=14 221 356 136 12 1.22 0.61

M=16 992 1673 671 62 1.17 0.58

M=18 4509 7350 2733 390 1.18 0.59

4 CPUs
M=14 111 195 77 11 2.22 0.56

M=16 539 840 299 42 2.33 0.58

M=18 2194 3650 1306 150 2.37 0.59

8 CPUs
M=14 56 121 60 13 3.58 0.45

M=16 253 433 168 33 4.51 0.56

M=18 1092 1865 698 93 4.64 0.58

16 CPUs
M=14 30 104 71 22 4.16 0.26

M=16 192 327 139 88 5.97 0.37

M=18 823 1173 356 293 7.38 0.46

32 CPUs
M=14 21 127 386 39 3.41 0.11

M=16 68 249 180 63 7.84 0.25

M=18 308 619 303 119 13.98 0.44

Optimized Manta RMI
1 CPU Pure FFT Total exec. time Communication Barrier Speedup Efficiency

M=14 438 765 329 0 0.56 0.56

M=16 1930 3260 1312 0 0.59 0.59

M=18 8665 14606 2875 0 0.59 0.59

2 CPUs
M=14 229 264 130 28 1.64 0.82

M=16 982 1639 606 40 1.19 0.60

M=18 4368 7166 2545 161 1.21 0.60

4 CPUs
M=14 108 183 68 7 2.37 0.59

M=16 518 836 289 58 2.34 0.58

M=18 2305 3673 1238 231 2.36 0.59

8 CPUs
M=14 58 108 44 9 4.01 0.50

M=16 248 412 148 16 4.74 0.59

M=18 1106 1827 635 83 4.74 0.59

16 CPUs
M=14 31 86 48 11 5.03 0.31

M=16 123 221 88 12 4.84 0.55

M=18 550 904 302 35 9.57 0.60

32 CPUs
M=14 32 151 116 38 2.87 0.09

M=16 68 172 96 15 11.35 0.35

M=18 290 496 182 25 17.44 0.55
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Sun RMI
2 CPUs Pure FFT Total exec. time Communication Barrier Speedup Efficiency

M=14 227 2841 2340 491 0.12 0.06

M=16 978 10346 10352 1872 0.14 0.07

M=18 4350 40621 42175 1425 0.15 0.08

4 CPUs
M=14 111 2721 1901 1122 0.13 0.03

M=16 454 8335 6919 1329 0.18 0.04

M=18 2212 30577 28413 4078 0.21 0.05

8 CPUs
M=14 62 3885 1615 2542 0.09 0.01

M=16 235 9091 6358 3870 0.16 0.02

M=18 1785 29031 25036 6286 0.22 0.03

16 CPUs
M=14 40 9171 4045 6504 0.04 0.00

M=16 136 14064 8668 7380 0.10 0.01

M=18 802 36217 30402 9980 0.17 0.01

32 CPUs
M=14 406 32582 − − 0.01 0.00

M=16 − − − − 0,00

M=18 − − − − 0,00

Orca
1 CPU Pure FFT Total exec. time Communication Speedup Efficiency

M=14 165 312 146

M=16 740 1559 708

M=18 3195 6563 2871

2 CPUs
M=14 83 159 52 1.96 0.98

M=16 366 933 386 1.67 0.83

M=18 1586 4264 1898 1.54 0.77

4 CPUs
M=14 39 88 30 3.55 0.89

M=16 183 364 132 4.27 1.07

M=18 791 1953 852 3.36 0.84

8 CPUs
M=14 21 55 19 5.67 0.71

M=16 91 188 67 8.27 1.03

M=18 398 815 302 8.05 1.01

16 CPUs
M=14 10 44 16 7.09 0.44

M=16 45 117 47 13.29 0.83

M=18 198 415 160 15.81 0.99

32 CPUs
M=14 6 55 22 5.67 0.18

M=16 24 90 36 17.28 0.54

M=18 99 242 92 27.12 0.85
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14  Appendix B − Radixsort results

RBS with Sun JDK 

Multithreaded
#threads/input size 100000 500000 1000000

2 477 2459 Nav

Sequential/Sun RMI 
RBS execution time 

CPUs/input size 100000 500000 1000000

1 1954 6620 Nav

2 1040 5940 2341

4 1223 4231 3211

8 1262 2869 4160

16 Nav Nav Nav

32 Nav Nav Nav

RBS Speedups
CPUs/input size 100000 500000 1000000

2 1.88 1.4 Nav

4 1.6 1.56 Nav

8 1.55 2.31 Nav

16 Nav Nav Nav

32 Nav Nav Nav

RBS efficiency
CPUs/input size 100000 500000 1000000

2 0.94 0.56 Nav

4 0.4 0.39 Nav

8 0.19 0.29 Nav

16 Nav Nav Nav

32 Nav Nav Nav

Breakdown
Radixsort

CPUs/input size 100000 500000 1000000

2 810 4917 942

4 503 2717 472

8 212 1099 263

16 Nav Nav Nav

32 Nav Nav Nav

Merging
CPUs/input size 100000 500000 1000000

2 161 523 827

4 179 738 1213

8 199 888 1665

16 Nav Nav Nav

32 Nav Nav Nav

Communication
CPUs/input size 100000 500000 1000000

2 69 500 572

4 541 776 1526

8 851 882 2232

16 Nav Nav Nav

32 Nav Nav Nav
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RBS with Manta

Sequential/Manta RMI
RBS execution time

CPUs/input size 100000 500000 1000000

1 1091 5854 11619

2 554 3112 5792

4 324 1785 3591

8 216 1087 2161

16 173 794 1528

32 173 669 1266

RBS Speedups
CPUs/input size 100000 500000 1000000

2 1.97 1.88 2

4 3.37 3.28 3.24

8 5.05 5.39 5.38

16 6.31 7.37 7.6

32 6.31 8.75 9.18

RBS Efficiency
CPUs/input size 100000 500000 1000000

2 0.98 0.94 1

4 0.84 0.82 0.81

8 0.63 0.67 0.67

16 0.39 0.46 0.48

32 0.2 0.27 0.29

Breakdown
Radixsort

CPUs/input size 100000 500000 1000000

2 506 2879 5326

4 252 1410 2895

8 125 620 1247

16 62 312 633

32 30 157 311

Merging
CPUs/input size 100000 500000 1000000

2 39 198 398

4 59 322 597

8 70 347 795

16 73 400 744

32 78 401 771

Communication
CPUs/input size 100000 500000 1000000

2 9 35 68

4 13 53 99

8 21 120 119

16 38 82 151

32 65 111 184

RCS with Manta

Multithreaded
#threads/input size 100000 500000 1000000 3000000

2 65 291 535 1646

Multithreaded speedup 
#threads/input size 100000 500000 1000000 3000000

2 2.4 2.97 3.06 2.98
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Sequential/Manta RMI 
RCS Execution time

CPUs/input size 100000 500000 1000000 3000000

1 154 782 1573 4750

2 122 587 1158 3458

4 86 319 605 1764

8 125 234 384 959

16 267 329 402 683

32 649 696 737 894

RCS Speedup
CPUs/input size 100000 500000 1000000 3000000

2 1.26 1.33 1.36 1.37

4 1.79 2.45 2.6 2.69

8 1.23 3.34 4.1 4.95

16 0.58 2.38 3.91 6.95

32 0.24 1.12 2.13 5.31

RCS Efficiency
CPUs/input size 100000 500000 1000000 3000000

2 0.63 0.67 0.68 0.69

4 0.45 0.61 0.65 0.67

8 0.15 0.42 0.51 0.62

16 0.04 0.15 0.24 0.43

32 0.01 0.04 0.07 0.17

Breakdown
Histogramtime

CPUs/input size 100000 500000 1000000 3000000

2 25 125 247 740

4 12 63 125 370

8 7 32 63 186

16 3 16 34 94

32 3 9 17 51

Sorttime
CPUs/input size 100000 500000 1000000 3000000

2 36 187 374 1126

4 19 94 188 561

8 9 48 95 281

16 6 24 47 141

32 3 13 25 72

Mergetime
CPUs/input size 100000 500000 1000000 3000000

2 7 8 9 10

4 29 31 30 38

8 94 89 92 90

16 250 265 247 249

32 636 683 658 669

Permutetime
CPUs/input size 100000 500000 1000000 3000000

2 54 266 523 1572

4 33 133 263 792

8 31 79 141 394

16 71 94 125 248

32 203 214 228 287
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15  Appendix C − Water results

Water with Sun JDK, without
JIT
1728 molecules, 2 iterations 

2nd iteration measured 

CPUs / Sun RMI Execution time incl. Poteng Speedup Efficiency

1 1225926 (with JIT 305312)

2 632509 1.94 1.94

4 377560 3.25 3.25

8 Nav Nav Nav

16 Nav Nav Nav

32 Nav Nav Nav

Water with Manta

1728 molecules, 2 iterations 

2nd iteration measured 

CPUs/Manta RMI
Execution time 
excl. Poteng

Execution time 
incl. Poteng Speedup Efficiency

1 241486

2 90059 127159 1.9 0.95

4 43681 62215 3.88 0.97

8 20627 30391 7.95 0.99

16 10281 15305 15.78 0.99

32 5454 7992 30.22 0.94

Breakdown 
CPUs/Manta RMI Fptime Communication time Time intraf + predcorr + misc

1 241216 0 270

2 126525 132 502

4 61536 430 249

8 29397 185 809

16 14556 290 459

32 7554 308 130

Water : Orca Vs. Manta Vs. Java

With 1728 molecules
Execution time

CPUs / OS Orca Manta Java

1 71553 241486 1225926

2 38528 127159 632509

4 18757 62215 377560

8 9308 30391 Nav

16 4674 15305 Nav

32 2359 7992 Nav

Speedups

CPUs / OS Orca Manta Java

2 1.86 1.9 1.94

4 3.81 3.88 3.25

8 7.69 7.95 Nav

16 15.31 15.78 Nav

32 30.33 30.22 Nav
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16  Appendix D − Checkers result

All timings are in milliseconds.

Nodes Evaluation Move
Generation

Make
Move

Get
Node

Put
Node

Idle Misc. Total Speedup Efficiency

Seq. Manta 1116417 7066 57588 27895 6326 33830 0 24573 157276

Seq. Java 1116417 8374 75474 65051 10125 11982 0 32673 203678

Seq. Java
SMP 1116417 5020 37337 39584 6548 8648 0 21443 118580

Single Thread
SMP 1116417 4890 39468 38418 6265 7110 1450 19966 117567 1.01 1.01

Dual Thread
SMP 1544294 3793 73543 37635 5265 7681 11379 18563 157857 0.75 0.38

FD Sun Part.
TT 8 CPUs

Nodes Evaluation Move
Gen.

Make
Move

Get
Node

Put
Node

Get
Hndl

Put
Hndl

Message Idle Misc. Total Speedup

M:32 LT:2 5862405 4913 23709 12733 398018 1183 1719 369 22373 62528 126286 653830 0.24

16 CPUs

M:32 LT:0 6451732 2720 12357 7023 285953 410 998 216 19692 104290 91945 525604 0.30

32 CPUs

M:8 LT:2 6881785 1456 6583 3694 179568 109 555 131 18280 146597 84075 441048 0.36

RD Manta
Part. TT
2 CPUs

Nodes Evaluation Move
Gen..

Make
Move

Get
Node

Put
Node

Get
Hndl

Put
Hndl

Message Idle Misc. Total Speedup

M:32 LT:2 1737395 5619 32747 20607 30415 5306 239 554 19886 18094 13078 146544 1.07

4 CPUs

M:32 LT:2 1995557 3351 16463 9822 17148 943 181 476 12643 26934 13618 101579 1.55

8 CPUs

M:32 LT:2 3000992 2510 11795 6825 11285 255 139 393 8790 73022 11537 126551 1.24

16 CPUs

M:128 LT:2 3532517 1467 6532 3615 5360 81 82 216 2467 82410 18498 120728 1.30

32 CPUs

M:32 LT:2 3663289 747 3185 1873 1648 22 42 123 1628 87502 12952 109722 1.43

FD YBWC
Manta
Part. TT
2 CPUs

Nodes Evaluation Move
Gen.

Make
Move

Get
Node

Put
Node

Get
Hndl

Put
Hndl

Message Idle Misc. Total Speedup

M:128 LT:2 6983833 26691 139690 84587 309218 41140 690 153 10033 38586 69032 719818 0.22

4 CPUs

M:8 LT:2 7377753 12507 58769 35281 96756 3634 480 144 11770 20341 44192 283873 0.55

8 CPUs

M:8 LT:2 7777522 6600 28867 15551 43587 1173 270 81 5396 27972 30585 160081 0.98

16 CPUs

M:8 LT:2 8377580 3567 14213 7338 16215 1186 153 47 2546 34576 16832 96673 1.63

32 CPUs

M:8 LT:2 9211210 1975 7658 3743 5795 239 81 25 1094 47824 13699 82134 1.91

FD Manta
Local TT

Nodes Evaluation
Move
Gen.

Make
Move

Get
Node

Put
Node

Alpha
Update Idle Misc. Total Speedup

8 CPUs 13486502 11499 97023 62987 10419 89973 33 256995 36520 565449 0.28

16 CPUs 16239678 6269 39362 28259 5617 25846 153 225762 11738 343006 0.46

32 CPUs 18894213 3615 20419 11739 3231 8815 138 131621 21844 201422 0.78
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FD Manta
Part. TT
2 CPUs

Nodes Evaluation
Move
Gen.

Make
Move

Get
Node

Put
Node

Get
Hndl

Put
Hndl Message Idle Misc. Total Speedup

M:8 LT:2 6270120 27248 138575 71390 259354 44703 590 167 31994 21378 63471 658868 0.24

M:128 LT:2 6623963 23583 127889 90360 283134 38253 657 138 6488 28909 60549 659959 0.24

4 CPUs

M:8 LT:0 5602169 9270 49677 25724 186687 2839 2338 626 29221 38911 25310 370603 0.42

M:8 LT:2 6794173 11252 53458 31608 84980 2869 436 133 9934 20122 31851 246643 0.64

M:8 LT:4 9474392 15013 72554 41907 74366 3990 83 31 9103 32517 44742 294306 0.53

M:32 LT:0 5766238 9775 49631 27700 192979 3456 2335 500 12686 35713 31712 366486 0.43

M:32 LT:2 6939740 11657 53941 31832 87148 2484 445 105 3466 19913 35647 246638 0.64

M:32 LT:4 10007478 16068 75701 44390 84894 5255 95 24 2458 33178 43911 305972 0.51

M:128 LT:0 5980262 10118 49906 30343 204343 3009 2398 503 8369 46773 29237 384998 0.41

M:128 LT:2 7332458 12069 55818 34351 95279 3119 460 106 2366 20791 38752 263110 0.60

M:128 LT:4 10623427 16946 80222 47289 97891 5224 87 21 1588 34475 43437 327178 0.48

8 CPUs

M:8 LT:0 5673623 4789 22357 12976 90089 667 1373 377 12669 37897 18493 201687 0.78

M:8 LT:2 7576178 6386 27399 15208 42138 1151 263 80 5491 24081 31099 153295 1.03

M:8 LT:4 11645689 9541 40121 22438 25783 1967 54 19 2506 43458 32452 178340 0.88

M:32 LT:0 6087517 5213 23532 14100 98709 717 1416 302 5624 36689 29217 215519 0.73

M:32 LT:2 7641239 6425 27131 15460 43698 1127 256 64 1726 25506 22536 143930 1.09

M:32 LT:4 12835969 10454 43514 25251 28694 2224 56 13 743 41301 33393 185644 0.85

M:128 LT:0 6461766 5492 25044 15030 103763 684 1529 329 3903 32491 42050 230315 0.68

M:128 LT:2 8808132 7388 31751 17558 50714 1148 299 61 957 31983 27786 169645 0.93

M:128 LT:4 15324370 12429 52272 30667 39424 2429 70 14 361 50307 35843 223815 0.70

16 CPUs

M:8 LT:0 5996447 2521 11102 6380 48561 249 757 213 7270 39346 22865 139265 1.13

M:8 LT:2 8113324 3425 13513 7035 15549 1182 151 45 2561 30171 25419 99051 1.59

M:8 LT:4 14599987 6069 23075 11511 8393 3994 33 12 845 53621 34566 142118 1.11

M:32 LT:0 6476488 2761 12132 6754 53893 259 795 174 3051 35668 17945 133432 1.18

M:32 LT:2 9213128 3889 15308 8081 17807 1256 163 35 963 34374 25764 107640 1.46

M:32 LT:4 17641292 7278 28076 14354 10380 4242 40 8 332 66978 36305 167994 0.94

M:128 LT:0 7440380 3173 13811 7726 61459 238 903 196 2336 39977 30276 160095 0.98

M:128 LT:2 11771428 4960 19774 10596 24365 1183 198 39 673 40851 34746 137384 1.14

M:128 LT:4 23221214 9534 37724 20134 14758 3974 48 8 175 88684 47482 222521 0.71

32 CPUs

M:8 LT:0 6629109 1397 5726 3118 22386 95 440 124 4364 42034 22050 101734 1.55

M:8 LT:2 9225551 1973 7597 3732 6089 450 82 25 1156 31127 18647 70878 2.22

M:8 LT:4 18389770 3850 14544 7042 4036 2004 19 6 377 63271 42537 137686 1.14

M:32 LT:0 7392783 1570 6409 3475 25894 114 455 98 1850 43516 30304 113684 1.38

M:32 LT:2 11825732 2520 9710 4751 7740 561 98 21 627 42913 25246 94188 1.67

M:32 LT:4 25673907 5314 20350 9852 5751 2749 28 5 212 87072 57534 188868 0.83

M:128 LT:0 9288760 1983 8228 4489 33905 110 552 112 1488 51075 32083 134024 1.17

M:128 LT:2 16944618 3591 13882 7072 12167 666 136 26 550 63459 42009 143557 1.10

M:128 LT:4 34957535 7226 27936 13602 8663 3532 42 4 110 117806 59229 238150 0.66

FD Manta Repl.
TT 4 CPUs

Nodes Evaluation Move
Gen.

Make
Move

Get
Node

Put
Node

Alpha
Update

Broadcast Idle Misc. Total Speedup

M:128 LT:4 6997315 11233 83247 60905 12037 67558 18 192430 83586 43683 554683 0.28

8 CPUs

M:128 LT:4 7947059 6241 38481 22028 5890 21581 34 84630 80222 20517 279622 0.56

16 CPUs

M:128 LT:4 9136056 3569 18961 11879 3256 7254 67 36007 71750 22198 174940 0.90

32 CPUs

M:128 LT:4 10404242 2087 9978 5897 1839 2702 131 17893 68947 10513 119988 1.31
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