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Abstract

The aim of the Albatross project is to study applications and programming environ-
ments for computational Grids. We focus on high performance applications, running
in parallel on multiple clusters or MPPs that are connected by wide-area networks
(WANSs). We briefly present three Grid programming environments developed in
the context of the Albatross project: the MagPIe library for collective communi-
cation with MPI, the Replicated Method Invocation mechanism for Java (RepMI),
and the Java-based Satin system for running divide-and-conquer programs on Grid
platforms.

A major challenge in investigating the performance of such applications is the
actual WAN behavior. Typical wide-area links are just part of the Internet and thus
shared among many applications, making runtime measurements irreproducible and
thus scientifically hardly valuable. To overcome this problem, we developed a WAN
emulator as part of Panda, our general-purpose communication substrate. The WAN
emulator allows us to run parallel applications on a single (large) parallel machine
with only the wide-area links being emulated. The Panda emulator is highly accurate
and configurable at runtime. We present a case study in which Satin runs across
various emulated WAN scenarios.
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1 Introduction

The development of computational Grids opens up possibilities for completely
new types of applications, ranging from access to remote data and instruments
to distributed supercomputing on geographically distributed resources. Expe-
rience with several distributed supercomputing applications shows that this
technique can effectively solve challenging problems that cannot be done with
more tradional approaches. Examples include RSA-155 [1], SETI@home [2],
and Entropia [3]. Unfortunately, these case studies are limited to parallel ap-
plications that are extremely coarse-grained.

In our research, called the Albatross project, we study whether this approach
can be made more general by running medium-grained high-performance ap-
plications on a Grid. The key problem of course is the low communication
performance of the wide-area networks (WANSs) in a Grid, which typically are
orders of magnitude slower than local interconnects. We believe, however, that
in practice many parallel Grid applications will run on collections of clusters,
NOWs, or supercomputers, rather than on individual workstations on the In-
ternet. A collection of, say, clusters can be seen as a hierarchical system with
fast local communication (over the LAN) and slow wide-area communication
(over the WAN). We therefore study how parallel applications can be op-
timized to run efficiently on hierachical systems. To do useful performance
experiments, we also have built a geographically distributed cluster system,
called DAS, which consists of four Myrinet-based clusters located at different
universities in The Netherlands.

In the first phase of the Albatross project, we have succesfully optimized many
medium-grained applications to run efficiently on a DAS-like system, show-
ing that there is far more opportunity for distributed supercomputing than
may be expected. Next, we have developed several programming environments
that ease the development parallel Grid applications. Each environment takes
the hierarchical structure of the Grid into account and optimizes certain as-
pects: MagPle (an MPI library) optimizes collective communication, RepMI
(a Java extension) supports object replication on Grids, and Satin is a Java-
centric divide-and-conquer system that optimizes load balancing. In the paper,
we summarize these three programming environments briefly. Finally, we de-
scribe new research that aims at a methological performance evaluation of
parallel applications and programming systems on a Grid. The key idea is the
development of a testbed that emulates a Grid on a single large cluster and
supports various user-defined performance scenarios for the wide-area links of
the emulated Grid. We give a detailed performance evaluation of several load
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balancing algorithms in Satin using this testbed.

The outline of the paper is as follows. In Section 2 we describe the DAS
system and the three programming environments MagPle, RepMI, and Satin.
In Section 3 we describe the Panda wide-area emulator. In Section 4 we present
the case study for the Satin load balancing algorithms. Finally, Section 5
discusses related work and Section 6 concludes.

2 The Albatross Grid Programming Environments

The Albatross project started by investigating the behavior of medium-grained
parallel applications, running on multiple cluster computers that are connected
by wide-area links [4-6]. Our experimentation platform is the Distributed
ASCI Supercomputer (DAS), as shown in Fig. 1. It consists of Myrinet-based
cluster computers located at four Dutch universities that participate in the
ASCI research school.? Each DAS compute node is a 200 MHz Pentium-Pro,
running RedHat Linux. By the end of 2001, a follow-up system, called DAS-
2, will be operational. DAS-2 will consist of five Myrinet-based clusters with
dual Pentium-III nodes, enabling us to investigate the behavior of parallel
applications on multiple clusters of SMPs.

Delft Leiden

24 24

VU Amsterdam UVA Amsterdam

128 24

Fig. 1. The wide-area DAS system

The findings from [4-6] indicate that parallel applications that have been
written for homogeneous systems (like a single cluster computer) do not run
efficiently on multi-cluster systems with hierachical network interconnects.

1 The ASCI research school is unrelated to, and came into existence before, the
Accelerated Strategic Computing Initiative.



However, most applications can be rewritten in order to tolerate the high
latency and the low bandwidth of the WAN links. High WAN latency can be
tolerated by overlapping computation with asynchronous communication. Low
WAN bandwidth can be tolerated by reducing communication overhead, both
by avoiding redundant communication between clusters and by combining
several short messages into longer ones that can be processed more efficiently.
However, such applications can not run efficiently on multi-cluster systems
that either inherently require high inter-cluster bandwidth or that rely on
frequent synchronization between processes. In the latter case, the high WAN
latency causes the performance problems.

Our manual modifications to the application source code were effective but
also increased code complexity. In an ideal case, the multi-cluster aspects of
communication should be separated from the application-specific parts of the
source code. For this purpose, we developed the Grid programming environ-
ments presented in the following subsections.

2.1 MagPle

The collective communication operations as defined by the MPI standard [7]
describe an important set of communication patterns occuring between groups
of processes. Frequently used examples are the broadcast, barrier, and reduce
operations. Our MagPle library [8,9] implements MPT’s collective operations
with optimizations for wide area systems (Grids). Existing parallel MPI appli-
cations can be run on Grid platforms using MagPIe by relinking the programs
with our library. No change in application code is necessary. MagPle is inde-
pendent of the underlying MPI platform. MagPIe has a simple API through
which the underlying Grid computing platform (Panda, in our case) provides
the information about the number of clusters in use, and which process is
located in which cluster.

MagPle’s basic idea is to adapt MPI’s collective algorithms to the hierarchical
shape of Grid-based systems. Our hierarchical collective algorithms speed up
collective completion time by reducing the utilization of the slow wide-area
links to the necessary minimum. For this purpose, MagPle ensures that each
sender-receiver path contains at most one wide-area link and that each data
item is sent at most once to each receiving cluster. We have shown in [8,9] that
MagPle significantly reduces the completion times of individual collective op-
erations as well as that of parallel applications, compared to Grid-unaware col-
lective algorithms. Actual performance improvements depend on the number
of clusters and on WAN latency/bandwidth. With long messages, wide-area
bandwidth needs to be utilized carefully. MagPle achieves this by splitting
long messages into small segments which can be sent in parallel over multiple



wide-area links.

2.2 RepMI

Our work in [4] investigated the use of Java RMI for running parallel applica-
tions on Grid platforms. We found that manually optimized Java applications
can indeed run efficiently on a Grid platform, at the price of using RMI in
a style resembling “message passing.” Sharing objects using RMI, however,
leads to prohibitive performance penalties.

An important observation is that many shared objects have a very high ratio
of read to write operations. Using object replication can help solving the per-
formance problems for such objects. For this purpose, we have delevoped the
Replicated Method Invocation mechanism (RepMI) [10]. RepMI is a compiler-
based approach for object replication in Java that is designed to resemble a
Remote Method Invocation. Our model does not allow arbitrarily complex
object graphs to be replicated, but deliberately imposes restrictions to ob-
tain a clear programming model and high performance. Briefly, our model
allows the programmer to define closed groups of objects, called clouds, that
are replicated as a whole. A cloud has a single entry point, called the root
object, on which its methods are invoked. The compiler and runtime system
together determine which methods will only read (but not modify) the object
cloud; such read-only methods are executed locally, without any communica-
tion. Methods that modify any data in the cloud are broadcast and applied
to all replicas. RepMI implements a MagPle-like broadcast operation for Grid
environments. The semantics of such replicated method invocations are similar
to those of RMI. We have implemented RepMI in the Manta high-performance
Java system [11].

2.8 Satin

Satin’s programming model is an extension of the single-threaded Java model.
To achieve parallel execution, Satin programs do not have to use Java’s threads
or Remote Method Invocations (RMI). Instead, they use the much simpler
divide-and-conquer primitives. Satin does allow the combination of its divide-
and-conquer primitives with Java threads and RMIs. Additionally, Satin pro-
vides shared objects via RepMI.

We augmented the Java language with three keywords, much as in the Cilk [12]
system: spawn, sync, and satin. The satin modifier is placed in front of a
method declaration. It indicates that the method may be spawned. The spawn
keyword is placed in front of a method invocation to indicate possibly paral-



lel execution. We call this a spawned method invocation. Conceptually, a new
thread is started for running the method upon invocation. Satin’s implemen-
tation, however, eliminates thread creation altogether. A spawned method in-
vocation is put into a local work queue. From the queue, the method might be
transferred to a different CPU where it may run concurrently with the method
that executed the spawn. The sync operation waits until all spawned calls
in the current method invocation are finished; the return values of spawned
method invocations are undefined until a sync is reached. A detailed descrip-
tion of Satin’s implementation can be found in [14].

Spawned method invocations are distributed across the processors of a par-
allel Satin program by work stealing from the work queues mentioned above.
In [15], we presented a new work stealing algorithm, Cluster-aware Random
Stealing (CRS), specifically designed for cluster-based, wide-area (Grid com-
puting) systems. In Section 4, we will present a case study with Satin running
across a variety of emulated wide-area network scenarios. We run four parallel
applications, for each comparing the following three work stealing algorithms.
A detailed description of Satin’s wide-area work stealing can be found in [15].

Random Stealing (RS) RS attempts to steal a job from a randomly se-
lected peer when a processor finds its own work queue empty, repeating
steal attempts until it succeeds [12,13]. This approach minimizes communi-
cation overhead at the expense of idle time. No communication is performed
until a node becomes idle, but then it has to wait for a new job to arrive. On
a single-cluster system, RS is the best performing load-balancing algorithm.
On wide-area systems, however, this is not the case. With C clusters, on
average (C'— 1)/C x 100% of all steal requests will go to nodes in remote
clusters, causing significant wide-area communication overheads.

Cluster-Hierarchical Stealing (CHS) CHS has been proposed for load
balancing divide-and-conquer applications in wide-area systems [16,17]. CHS
minimizes wide-area communication. The idea is to arrange processors in a
tree topology, and to send steal messages along the edges of the tree. When
a node is idle, it first asks its child nodes for work. If the children are also
idle, steal messages will recursively descend the tree. Only when the entire
subtree is idle, messages will be sent upwards in the tree (e.g., across WAN
links), asking parent nodes for work. CHS has the drawback that all nodes
of a cluster have to become idle before wide-area steal attempts are started.
During the round-trip time of the steal message, the entire cluster remains
idle.

Cluster-aware Random Stealing (CRS) In CRS, each node can directly
steal jobs from nodes in remote clusters, but at most one job at a time.
Whenever a node becomes idle, it first attempts to steal from a node in a
remote cluster. This wide-area steal request is sent asynchronously: Instead
of waiting for the result, the thief simply sets a flag and performs additional,
synchronous steal requests to randomly selected nodes within its own clus-



ter, until it finds a new job. As long as the flag is set, only local stealing
will be performed. The handler routine for the wide-area reply simply resets
the flag and, if the request was successful, puts the new job into the work
queue. CRS combines the advantages of RS inside a cluster with a very
limited amount of asynchronous wide-area communication. In Section 4 we
will show that CRS performs almost as good as with a single, large cluster,
even in extreme wide-area network settings.

3 The Panda Wide-area Network Emulator

On the Distributed ASCI Supercomputer (DAS) system, parallel program-
ming environments run on top of our Panda communication library [18]. For
MPI-style message passing, we ported the MPICH library [19] to run on top
of Panda. Both RepMI and Satin use our Manta high-performance Java sys-
tem [11], which also communicates via Panda.

Panda provides an efficient portability layer for parallel applications and run-
time systems. Its lower, system-level modules provide threads and communica-
tion primitives. Panda’s interface modules provide higher-level communication
like message passing, remote procedure call (RPC), and group communication.
Panda adapts itself to the underlying communication system; e.g. it imple-
ments reliable communication if the underlying network does not guarantee
packet delivery. The nodes within a DAS cluster communicate via Myrinet [20],
to which Panda has access via the LFC communication substrate [21].
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Fig. 2. Local and wide-area communication with Panda and the WAN emulator

Panda also allows to run parallel applications across multiple DAS clusters. For
this purpose, one dedicated node in each cluster acts as a gateway. Whenever
an application node wants to send a message to a node in a different cluster,
it sends the message to its local gateway node, which in turn forwards it to
the gateway node of the remote cluster, where the message gets forwarded to
the receiver node. Between cluster gateways, Panda communicates using the



standard TCP protocol. This communication path is shown in Fig. 2, using
the upper, shaded path between the two clusters (on the left and on the right
sides). The Panda gateway nodes run binaries of the actual application pro-
gram. During program startup, a Panda gateway enters the code for message
forwarding rather than the application’s main() function.

A major challenge in investigating the performance of parallel Grid applica-
tions is the actual WAN behavior. Typical wide-area (Internet) links are shared
among many applications, making runtime measurements irreproducible and
thus scientifically hardly valuable. To overcome this problem, we developed a
WAN emulator for Panda. The WAN emulator allows us to run parallel appli-
cations on a single (large) cluster with only the wide-area links being emulated.
For this purpose, Panda provides an emulator version of its gateway function-
ality. Here, communication between gateway nodes physically occurs inside a
single cluster, in our case using Myrinet. This communication path is shown
in Fig. 2, using the lower path between the two clusters.

The actual emulation of WAN behavior occurs in the receiving cluster gate-
ways which delay incoming messages before forwarding them to the respective
receivers. On arrival of a message from a remote cluster, the gateway com-
putes the emulated arrival time, taking into account the emulated latency
and bandwidth from sending to receiving cluster, and the message length.
The message is then put into a queue and gets delivered as soon as the delay
expires. With this setup, the WAN emulation is completely transparent to
the application processes, allowing realistic and simultaneously reproducible
wide-area experimentation.
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Fig. 3. Measured vs. emulated latency and bandwidth between 2 DAS clusters (in
both directions)

We also investigated the precision of our emulator. Therefore, we measured
bandwidth and latency between the DAS clusters using ping-pong tests with
messages of varying sizes. We then fed the measured parameters into the
emulator and re-ran our tests. Fig. 3 compares real and emulated latency and
bandwidth between the DAS clusters at VU (Amsterdam) and Delft University
of Technology (in both directions). In the graphs, the respective pairs of lines



are hardly distinguishable, giving evidence for the close match between the
real system and its emulation. The measurements for the other wide-area
DAS links show similar behavior.

Whenever a message arrives at a gateway node, its delay time is computed.
For making the emulation dynamically configurable, the delay computation
is encapsulated in an upcall routine, that is called upon message arrival. The
gateways can be configured at any time of an application run by activating
one of the following kinds of upcall routine. Furthermore, our emulator allows
additional, user-defined upcalls to be used.

The constant upcall emulates a WAN in which each link has constant la-
tency and bandwidth. However, each sender-receiver pair of gateways may
have different link speeds.

The script upcall is a variation of the constant upcall. Here, the gateways
interpret a configuration script in order to change the setting of the link
parameters throughout the application run. Fig. 4 shows a sample script
used for the case study presented in Section 4.

The TCP upcall is another variation of the constant upcall. Here, the gate-
ways accept commands from a remote process on a given TCP port. We have
developed a Java-based GUI process that allows a human user to dynami-
cally change the emulated links while an application is running.

The measure upcall lets each gateway read latency and bandwidth values
from prerecorded files containing time series, e.g. from measurements of real
wide-area links. One of the scenarios in Section 4 uses the measure upcall to
emulate the behavior of the real DAS system, as measured by the Network
Weather Service (NWS) [22].

The emulation upcalls can be activated in two different ways. First, Panda
can interpret command line options to select and parameterize an upcall. This
way, the emulation is completely transparent to the application program. More
flexible, although not transparent to the application, is Panda’s emulation API
that allows a running application program to directly influence the gateway
behavior. The emulation API allows, for example, the activation of a user-
defined upcall or the controlled experimentation from inside the application
itself.

4 A Case Study: Evaluation of Satin using various WAN Scenarios

We will now present a case study in which we evaluate Satin’s work stealing al-
gorithms by running four different applications across four emulated clusters.
We use the following nine different WAN scenarios of increasing complexity,
demonstrating the flexibility of Panda’s WAN emulator. Fig. 5 illustrates sce-



narios 1-8 in detail.

(1) The WAN is fully connected. The latency of all links is 100 ms; but the
bandwidth differs between the links.

(2) The WAN is fully connected. The bandwidth of all links is 100 KB/s; but
the latency differs between the links.

(3) The WAN is fully connected. Both latency and bandwidth differ between
the links.

(4) Like scenario 3, but the link between clusters 1 and 4 drops every third
second from 100 KB/s and 100 ms to 1 KB/s and 300 ms, emulating being
busy due to unrelated, bursty network traffic. Fig. 4 shows the emulator
script used for this scenario.

(5) Like scenario 3, but every second all links change bandwidth and latency
to random values between 10% and 100% of their nominal bandwidth,
and between 1 and 10 times their nominal latency.

(6) All links have 100 ms latency and 100 KB/s bandwidth. Unlike the previ-
ous scenarios, two WAN links are missing, causing congestion among the
different clusters.

(7) Like scenario 3, but two WAN links are missing.

(8) Like scenario 5, but two WAN links are missing.

(9) Bandwidth and latency are taken from pre-recorded NWS measurements
of the real DAS system.

read scenariod

sleep 2000

forever

set_sym one 1 4 1000 0.3
sleep 1000

set_sym one 1 4 1000000 0.001
sleep 2000

Fig. 4. The emulator script for scenario 4

We used the following Satin applications, taken from the set presented in [15].

Adaptive Integration numerically integrates a function over a given inter-
val by recursive interval division. This application is mostly sensitive to
latency because the job descriptions and results can be sent in very short
messages.

N Queens solves the problem of placing n queens on a n x n chess board.
This application sends medium-size messages and has a very irregular task
tree.

Ray Tracer is a simple ray tracing program. It divides a screen down to jobs
of single pixels. The individually calculated pixel colors are composed into
larger image segments. This application sends long result mesages, making
it sensitive to the available bandwidth.

Traveling Salesperson solves the famous problem of finding the shortest

10
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Fig. 5. Emulated WAN scenarios 1-8

path between n cities. By passing the distance table as a parameter, medium-
sized messages are exchanged.

Fig. 6 shows the speedups achieved by the four applications on four clusters of
16 nodes each, with the WAN links between them being emulated according to
the nine scenarios described above. For comparison, we also show the speedups
for a single, large cluster of 64 nodes. The three work stealing algorithms
described in Section 2 are compared with each other. RS sends by far the most
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Fig. 6. Speedups of 4 Satin applications with 3 load balancing algorithms and 9
different, emulated WAN scenarios

messages across the WAN links. The speedups it achieves are significantly
smaller, compared to a single, large cluster. This is especially the case in
scenarios in which high WAN latency causes long idle times or in which low
bandwidth causes network congestion. CHS is always the worst-performing
algorithm, even within a single cluster, due to complete clusters being idle
during a work-stealing message roundtrip time.

12



CRS always is the best performing algorithm. Due to its limited and asyn-
chronous wide-area communication, it can tolerate even very irregular WAN
scenarios, resulting in speedups close to a single, large cluster. However, there
are a few exceptions to the very high speedups achieved by CRS which occur
whenever the WAN bandwidth becomes too low for the application’s require-
ments. This happens with scenarios 4, 8, and 9. But even in those cases, CRS
still is Satin’s best performing work-stealing algorithm.

5 Related Work

Many Grid computing projects focus on building software infrastructures that
enable application execution in Grid evironments [23-25]. Our Panda library
can provide the communication-related runtime system for parallel applica-
tions that are running on top of such Grid infrastructures.

Network simulators like NSE [26] or DaSSF [27] focus on packet delivery and
network protocols, rather than the network behavior as it is observed by an ap-
plication. LAPSE [28] simulates parallel applications on configurations with
more than the available number of CPUs; the network behavior simulates
the Intel Paragon machines. The MicroGrid software [29] virtualizes the Grid
resources like memory, CPU, and networks. For the simulation, all relevant
system calls are trapped and mediated through the MicroGrid scheduler and
the NSE network simulator. This approach goes further than Panda’s network
emulation, but also impacts the sequential execution of the application bina-
ries. Panda’s wide-area emulator, however, allows to run unmodified binaries
of a parallel application, connecting them via physical LANs and emulated
WANSs. This network emulation provides a unique environment for experi-
mentation with parallel applications on Grid platforms, which has led to the
development of our Grid programming environments.

Some projects provide Grid-enabled implementations of the message passing
interface, MPI. MPI_Connect [30] focuses on interoperability between hetero-
geneous platforms. The works in [31,32] provide Grid-optimized implementa-
tions for some of MPI’s collective operations. Our MagPle library, however,
provides the most complete and advanced set of collective operations for Grid
platforms.

Systems like the SuperWeb [33], Gateway [34], and Bayanihan [35] provide
Java-centric environments for Grid computing platforms. However, efficient
Grid-aware communication mechanisms for parallel applications are not an
issue for these systems. Atlas [16] and Javelin 2.0 [36] are other Java-based
divide-and-conquer systems for Grid computing. Their main focus is on het-
erogeneity and fault tolerance. Satin’s main objective is application speed.

13



Both MPJ [37] and CCJ [38] provide MPI-style message passing and collective
communication for Java. Although their set of communication mechanisms is
richer than RMI and RepMI, they do not come with implementations that are
optimized for wide-area Grid platforms. Finally, Hyperion [39], Jackal [40], and
Javanaise [41] implement shared Java objects based on object caching. These
systems do not aim at Grid computing either. In contrast, our RepMI mech-
anism is based on message shipping for which we also provide a Grid-aware
implementation.

6 Conclusions

In the Albatross project, we study the efficiency of high-performance applica-
tions with medium-grained communication patterns on Grid computing plat-
forms. The key problem is the low communication performance of the wide-
area networks (WANs) in a Grid, which typically are orders of magnitude
slower than local interconnects. In the initial phase of the project, we de-
veloped several strategies for modifying a parallel application to improve its
runtime efficiency on a Grid. We use these modification strategies to build
programming environments for writing high-performance Grid applications.

In this paper, we have described three such environments, MagPle, RepMI,
and Satin. A major challenge in investigating the performance of Grid appli-
cations is the actual WAN behavior. Typical wide-area links are shared among
many applications, making runtime measurements irreproducible and thus sci-
entifically hardly valuable. To allow a realistic performance evaluation of Grid
programming systems and their applications, we have developed the Panda
WAN emulator, a testbed that emulates a Grid on a single, large cluster.
The testbed runs the applications in parallel but emulates wide-area links by
adding artificial delays. The latency and bandwidth of the WAN links can be
specified by the user in a highly flexible way. This network emulation provides
a unique environment for experimentation with high-performance applications
on Grid platforms.

We have used the Panda WAN emulator to evaluate the performance of one of
the three programming environments (Satin) under many different WAN sce-
narios. The emulator allowed us to compare several load balancing algorithms
used by Satin under conditions that are realistic for an actual Grid, but that
are hard to reproduce on such a Grid. Our experiments showed that Satin’s
CHS algorithm can actually tolerate a large variety of WAN link performance
settings, and schedule parallel divide-and-conquer applications such that they
run almost as fast on multiple clusters as they do on a single, large clus-
ter. In the near future, we will also investigate our other Grid programming
environments on a variety of different wide-area network scenarios.
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